(本小题共13分)如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里处的乙船.(Ⅰ)求处于处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线方向前往处救援,其方向与成角,求的值域.
某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为.(1)求抽取的男学生人数和女学生人数;(2)通过对被抽取的学生的问卷调查,得到如下列联表:
①完成列联表;②能否有的把握认为态度与性别有关?(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.解答时可参考下面临界值表:
已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,(i) 求的最值.(ii) 求四边形ABCD的面积;
已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列,的前三项和为,求证:
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.(1) 求CD与面ABC所成的角正弦值的大小;(2) 对于AD上任意点H,CH是否与面ABD垂直。
已知设函数 (Ⅰ)当,求函数的值域;(Ⅱ)当时,若="8," 求函数的值;