已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,(i) 求的最值.(ii) 求四边形ABCD的面积;
(本题满分13分) 某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(Ⅰ)求此运动员射击的环数的平均数; (Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(m,n). 求“”的概率.
设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当时,求函数的最大值及取得最大值时的的值.
已知椭圆经过点,过右焦点F且不与x轴重合的动直线L交椭圆于两点,当动直线L的斜率为2时,坐标原点O到L的距离为. (Ⅰ) 求椭圆的方程; (Ⅱ) 过F的另一直线交椭圆于两点,且,当四边形的面积S=时,求直线L的方程.
已知函数f(x)=在x=-2处有极值. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若函数f(x)在区间[-3,3]上有且仅有一个零点,求b的取值范围.
已知数列的前n项和为,,,等差数列中,且,又、、成等比数列. (Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前n项和Tn.