高中数学

如图,已知矩形所在平面垂直于直角梯形所在平面于直线,且

(Ⅰ)设点为棱中点,求证:平面
(Ⅱ)线段上是否存在一点,使得直线与平面所成角的正弦值等于?若存在,试确定点的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的余弦值;
(Ⅲ)设中点,在棱上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,,且,O,M分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置
(Ⅲ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.

(Ⅰ)求证:DE∥面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求三棱锥B﹣PEC的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正三棱柱中,分别为中点.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直三棱柱中,分别为的中点,,点在线段上,且

(1)证:
(2)若为线段上一点,试确定在线段上的位置,使得平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四棱锥中,平面,底面为直角梯形,,且分别为的中点.

(1)求证:平面
(2)若直线与平面的交点为,且,求截面与底面所成锐二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的平面角的余弦值..

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知矩形所在平面外一点平面分别是的中点,

(1)求证:平面
(2)若,求直线与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.

(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法试题