高中数学

已知两直线.试确定的值,使
(1)相交于点
(2)
(3),且轴上的截距为-1.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点

求证:(1)平面
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知


如图所示,四棱锥的底面是直角梯形, 底面,过的平面交,交不重合).

(Ⅰ)求证:
(Ⅱ)如果,求此时的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形中,为边的中点,将沿直线翻折成,若为线段的中点,则在翻折过程中,下面四个选项中正确的是        (填写所有的正确选项)

(1)是定值          
(2)点在某个球面上运动
(3)存在某个位置,使   
(4)存在某个位置,使平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

棱柱的所有棱长都为2,,平面⊥平面

(1)证明:
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形为矩形,

(1)
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正四棱锥中,分别是棱的中点,平面平面

(1)证明:平面
(2)求异面直线夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是矩形,分别是线段的中点,平面
(1)求证:平面
(2)若在棱上存在一点,使得平面,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱底面ABC,AB⊥BC,D为AC的中点,

(1)求证:平面
(2)设BC=3,求四棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正四面体中,点上,点上,且

证明:(1)平面
(2)直线直线

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.

(1)求证:PC //平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两条直线,两个平面,下面四个命题中不正确的是

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)求证:平面平面
(2)在线段上确定一点,使平面,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法试题