如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.(1)求证:CE∥平面ADP; (2)求证:平面PAD⊥平面PAB;(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.
求函数f(x)= 的值域 .
已知 (1)画函数f(x)的图像 .(2)求的单调区间. (3)求函数f(x)的定义域,值域. (4)判断并证明函数f(x)的奇偶性.
计算:(1) ( 2 )
已知圆:,点,直线:. ⑴求与圆相切,且与直线垂直的直线方程; ⑵若在直线上(为坐标原点)存在定点(不同于点),满足:对于圆上任意一点,都有为一常数,求所有满足条件的点的坐标.
直线经过点,其斜率为,直线与圆相交,交点分别为. (1)若,求的值; (2)若,求的取值范围; (3)若(为坐标原点),求的值.