在数列中,,且对任意的,成等比数列,其公比为.
(1)若=2(),求;
(2)若对任意的,,,成等差数列,其公差为,设.
① 求证:成等差数列,并指出其公差;
② 若=2,试求数列的前项的和.
已知椭圆E:过点D(1,),且右焦点为F(1,0),右顶点为A.过点F的弦为BC.直线BA,直线CA分别交直线l:x=m,(m>2)于P、Q两点.
(1)求椭圆方程;
(2)若FP⊥FQ,求m的值.
如图,相距14km的两个居民小区M和N位于河岸l(直线)的同侧,M和N距离河岸分别为10km和8km.现要在河的小区一侧选一地点P,在P处建一个生活污水处理站,从P排直线水管PM,PN分别到两个小区和垂直于河岸的水管PQ,使小区污水经处理后排入河道.设PQ段长为t km(0 < t < 8).
(1)求污水处理站P到两小区的水管的总长最小值(用t表示);
(2)请确定污水处理站P的位置,使所排三段水管的总长最小,并求出此时污水处理站分别到两小区水管的长度.
在△ABC中,分别为角A、B、C的对边,若=(,), ,且.
(1)求角A的度数;
(2)当,且△ABC的面积时,求边的值和△ABC的面积。
如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.
已知中心在原点,焦点在x轴上的椭圆C的离心率为 ,且经过点M.
(1)求椭圆C的方程;
(2)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足·=2?若存在,求出直线l1的方程;若不存在,请说明理由.
已知椭圆的方程为,两点,为椭圆的焦点,点在椭圆上,且.
(1)求椭圆的标准方程;
(2)如图已知椭圆的内接平行四边形的一组对边分别过椭圆的焦点、,求该平行四边形面积的最大值.