已知椭圆E:过点D(1,),且右焦点为F(1,0),右顶点为A.过点F的弦为BC.直线BA,直线CA分别交直线l:x=m,(m>2)于P、Q两点. (1)求椭圆方程; (2)若FP⊥FQ,求m的值.
已知直线与圆相交于两点,为坐标原点,的面积为. (1)试将表示成的函数,并求出其定义域; (2)求的最大值,并求取得最大时的值.
如图,已知平面,平面,为等边三角形,,为中点. (1)求证:平面; (2)求证:平面平面; (3)求直线与平面所成角的正弦值.
已知向量. (1)若,求的值; (2)记,在中,角的对边分别为,且满足,求的取值范围.
已知数列是首项为1的等差数列,且,若成等比数列,(1)求数列的通项公式;(2)设,求数列的前项和.
(选修4-5:不等式选讲) 关于的不等式, (1)当时,解上述不等式; (2)当时,若上述不等式恒成立,求实数的取值范围。