高中数学

已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于函数,看下面四个结论:
是奇函数;
②当时,恒成立;
的最大值是
的最小值是
其中正确结论的个数为(    )

A.1个 B.2个 C.3个 D.4个
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若m是2和8的等比中项,则圆锥曲线的离心率是(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,四边形ABCD为直角梯形,为等边三角形,且平面平面ABE,,P为CE中点.

(1)求证:
(2)求三棱锥D-ABP的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=x2﹣lnx+x+1,g(x)=aex++ax﹣2a﹣1,其中a∈R.
(Ⅰ)若a=2,求f(x)的极值点;
(Ⅱ)试讨论f(x)的单调性;
(Ⅲ)若a>0,∀x∈(0,+∞),恒有g(x)≥f′(x)(f′(x)为f(x)的导函数),求a的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,当|FD|=2时,∠AFD=60°.
(1)求证:FD垂直平分AQ,并求出抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,AB交y轴于点(0,m),若∠APB为锐角,求m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知椭圆C:的离心率为,其中左焦点(﹣2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,求线段AB的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设定函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)﹣9x=0的两个根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的导数为,且数列满足
(1)若数列是等差数列,求的值;
(2)若对任意,都有,成立的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

分形是几何学是美籍法国数学家伯努瓦·曼德尔布罗(BenoitMandelbrot)在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照下图1的分形规律可得到如图2所示的一个树形图,则当时,第行空心圆点个数与第行及第行空心圆点个数的关系式为________;第12行的实心圆点的个数是_______.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

满足条件,当且仅当时,取最小值,则实数的取值范围是(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,p为常数
(1)若对任意的,恒有,求p的取值范围;
(2)对任意的,函数恒成立,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,若函数有且仅有两个零点,则实数b的取值范围是(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,函数
(1)当时,求的最大值;
(2)若恒成立,求的取值范围;
(3)当时,函数有两个不同的零点,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学试题