设定函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)﹣9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.
(本小题满分12分)己知f(x)=2+,求函数y=+,x∈的最大值与最小值.
.(1)画出函数的图象;(2)利用图象回答:取何值时①只有唯一的值与之对应?②有两个值与之对应?③有三个值与之对应?
已知函数是奇函数,①求实数a和b的值;②判断函数在的单调性,并利用定义加以证明
已知奇函数是定义在上增函数,且,求x的取值范围.
(12分)函数f(x)定义在R上的偶函数,当x≥0时,f(x)=(1)写出f(x)单调区间;(2)函数的值域;