已知椭圆的方程为,两点,为椭圆的焦点,点在椭圆上,且.(1)求椭圆的标准方程;(2)如图已知椭圆的内接平行四边形的一组对边分别过椭圆的焦点、,求该平行四边形面积的最大值.
(本小题满分12分)已知三棱柱,底面三角形为正三角形,侧棱底面, ,为的中点,为中点.(Ⅰ) 求证:直线平面;(Ⅱ)求平面和平面所成的锐二面角的余弦值.
(本小题满分12分)已知函数.(Ⅰ) 求函数的单调递增区间;(Ⅱ) 已知中,角所对的边长分别为,若,,求的面积.
(满分8分)已知是实数,函数。(I)若,求的值;(II)在(1)的条件下,求曲线在点处的切线方程; (III)求在区间上的最大值。
(满分6分)已知函数,且。(I)求;(II)判断的奇偶性;(III)函数在上是增函数还是减函数?并证明你的结论。
(满分6分)(I)已知,且为第三象限角,求的值;(II)求函数的最大值。