在数列中,,且对任意的,成等比数列,其公比为.(1)若=2(),求;(2)若对任意的,,,成等差数列,其公差为,设.① 求证:成等差数列,并指出其公差;② 若=2,试求数列的前项的和.
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中的小球个数,试求的概率和的数学期望.
如图,四棱锥中,底面是边长为2的正方形,,且,为中点.(Ⅰ)求证:平面; (Ⅱ)求二面角的大小;(Ⅲ)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由.
如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点(Ⅰ)求边所在直线方程; (Ⅱ)为直角三角形外接圆的圆心,求圆的方程;(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.
(1)、已知函数若角(2)函数的图象按向量平移后,得到一个函数g(x)的图象,求g(x)的解析式.
已知函数①当时,求函数在上的最大值和最小值;②讨论函数的单调性;③若函数在处取得极值,不等式对恒成立,求实数的取值范围。