(本小题满分1 2分)如图,梯形中,于,于,且,现将,分别沿与翻折,使点与点重合.(1)设面与面相交于直线,求证:;(2)试类比求解三角形的内切圆(与三角形各边都相切)半径的方法,求出四棱锥的内切球(与四棱锥各个面都相切)的半径.
已知函数.(1)求的值;(2)设,求的值.
已知函数,数列满足,且.(1)试探究数列是否是等比数列?(2)试证明;(3)设,试探究数列是否存在最大项和最小项?若存在求出最大项和最小项,若不存在,说明理由.
已知是函数的一个极值点。(Ⅰ)求函数的单调区间;(Ⅱ)若直线与函数的图象有3个交点,求的取值范围。
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为,每件产品的售价与产量之间的关系式为.(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
如图,已知在直四棱柱中,,,.(I)求证:平面;(II)求二面角的余弦值.