首页 / 初中数学 / 试卷选题

2022年中考数学专题:锐角三角函数(一)

如图,矩形 ABCD 的对角线交于点 O .已知 AB = m BAC = α ,则下列结论错误的是 (    )

A.

BDC = α

B.

BC = m · tan α

C.

AO = m 2 sin α

D.

BD = m cos α

来源:2019年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在建筑物 AB 左侧距楼底 B 点水平距离150米的 C 处有一山坡,斜坡 CD 的坡度(或坡比)为 i = 1 : 2 . 4 ,坡顶 D BC 的垂直距离 DE = 50 米(点 A B C D E 在同一平面内),在点 D 处测得建筑物顶 A 点的仰角为 50 ° ,则建筑物 AB 的高度约为 (    )

(参考数据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 )

A.

69.2米

B.

73.1米

C.

80.0米

D.

85.7米

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,对角线 AC BD 相交于点 O AC = 6 3 BD = 6 ,点 P AC 上一动点,点 E AB 的中点,则 PD + PE 的最小值为 (    )

A.

3 3

B.

6 3

C.

3

D.

6 2

来源:2021年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,将长、宽分别为 12 cm 3 cm 的长方形纸片分别沿 AB AC 折叠,点 M N 恰好重合于点 P .若 α = 60 ° ,则折叠后的图案(阴影部分)面积为 (    )

A.

( 36 - 6 3 ) c m 2

B.

( 36 - 12 3 ) c m 2

C.

24 c m 2

D.

36 c m 2

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,连接 AC BD ,则 AC BD 的值为 (    )

A.

1 2

B.

2 2

C.

3 2

D.

3 3

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB = 4 cos C = 1 4 ,则 sin B 的值为 (    )

A.

10 2

B.

15 3

C.

6 4

D.

10 4

来源:2019年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 的延长线上,连接 DE ,点 F DE 的中点,连接 OF CD 于点 G ,连接 CF ,若 CE = 4 OF = 6 .则下列结论:① GF = 2 ;② OD = 2 OG ;③ tan CDE = 1 2 ;④ ODF = OCF = 90 ° ;⑤点 D CF 的距离为 8 5 5 .其中正确的结论是 (    )

A.

①②③④

B.

①③④⑤

C.

①②③⑤

D.

①②④⑤

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O 为正六边形 ABCDEF 对角线 FD 上一点, S ΔAFO = 8 S ΔCDO = 2 ,则 S 正六边形 ABCDEF 的值是 (    )

A.

20

B.

30

C.

40

D.

随点 O 位置而变化

来源:2021年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,相邻两个山坡上,分别有垂直于水平面的通信基站 MA ND .甲在山脚点 C 处测得通信基站顶端 M 的仰角为 60 ° ,测得点 C 距离通信基站 MA 的水平距离 CB 30 m ;乙在另一座山脚点 F 处测得点 F 距离通信基站 ND 的水平距离 FE 50 m ,测得山坡 DF 的坡度 i = 1 : 1 . 25 .若 ND = 5 8 DE ,点 C B E F 在同一水平线上,则两个通信基站顶端 M 与顶端 N 的高度差为(参考数据: 2 1 . 41 3 1 . 73 ) (    )

A.

9 . 0 m

B.

12 . 8 m

C.

13 . 1 m

D.

22 . 7 m

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A.

4 3

B.

3 4

C.

5 3

D.

5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = 3 BC = 4 D E 分别在 CA CB 上,点 F ΔABC 内.若四边形 CDFE 是边长为1的正方形,则 sin FBA =   

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯 AB 的坡度 i = 5 : 12 ( i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端 A 以0.5米 / 秒的速度用时40秒到达扶梯顶端 B ,则王老师上升的铅直高度 BC   米.

来源:2021年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

RtΔABC中,C=90°AB=5BC=4,则sinA=  

来源:2019年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中 AB 的长应是   

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头 C 测一段水平雪道一端 A 处的俯角为 50 ° ,另一端 B 处的俯角为 45 ° ,若无人机镜头 C 处的高度 CD 为238米,点 A D B 在同一直线上,则雪道 AB 的长度为   米.(结果保留整数,参考数据 sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 )

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为 6 3 的正六边形 ABCDEF 中,连接 BE CF ,其中点 M N 分别为 BE CF 上的动点.若以 M N D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为   

来源:2021年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, DE AC ,垂足为点 E .若 sin ADE = 4 5 AD = 4 ,则 AB 的长为   

来源:2021年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆的直径, C 为半圆的中点, A ( 2 , 0 ) B ( 0 , 1 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 C ,则 k 的值为   

来源:2021年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

高速公路上有一种标线叫纵向减速标线,外号叫鱼骨线,作用是为了提醒驾驶员在开车时减速慢行.如图,用平行四边形 ABCD 表示一个"鱼骨", AB 平行于车辆前行方向, BE AB CBE = α ,过 B AD 的垂线,垂足为 A ' ( A 点的视觉错觉点),若 sin α = 0 . 05 AB = 300 mm ,则 AA ' =    mm

来源:2021年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 5 ,点 E F 分别是边 AB BC 上的动点,点 E 不与 A B 重合,且 EF = AB G 是五边形 AEFCD 内满足 GE = GF EGF = 90 ° 的点.现给出以下结论:

GEB GFB 一定互补;

②点 G 到边 AB BC 的距离一定相等;

③点 G 到边 AD DC 的距离可能相等;

④点 G 到边 AB 的距离的最大值为 2 2

其中正确的是        .(写出所有正确结论的序号)

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一艘货船在灯塔 C 的正南方向,距离灯塔257海里的 A 处遇险,发出求救信号.一艘救生船位于灯塔 C 的南偏东 40 ° 方向上,同时位于 A 处的北偏东 60 ° 方向上的 B 处,救生船接到求救信号后,立即前往救援.求 AB 的长(结果取整数)参考数据: tan 40 ° 0 . 84 3 取1.73.

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知锐角 ΔABC 中, AC = BC

(1)请在图1中用无刻度的直尺和圆规作图:作 ACB 的平分线 CD ;作 ΔABC 的外接圆 O ;(不写作法,保留作图痕迹)

(2)在(1)的条件下,若 AB = 48 5 O 的半径为5,则 sin B =   .(如需画草图,请使用图 2 )

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 AB 垂直于地面 l ,活动杆 CD 固定在支撑杆上的点 E 处.若 AED = 48 ° BE = 110 cm DE = 80 cm ,求活动杆端点 D 离地面的高度 DF .(结果精确到 1 cm ,参考数据: sin 48 ° 0 . 74 cos 48 ° 0 . 67 tan 48 ° 1 . 11 )

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 ABCD 中, A = 45 ° AB = 8 AD = 6 E AD 的中点,点 F DC 上,且 DF = 5 ,求四边形 ABFE 的面积.(结果保留根号)

问题解决

(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园 ABCDE .按设计要求,要在五边形河畔公园 ABCDE 内挖一个四边形人工湖 OPMN ,使点 O P M N 分别在边 BC CD AE AB 上,且满足 BO = 2 AN = 2 CP AM = OC .已知五边形 ABCDE 中, A = B = C = 90 ° AB = 800 m BC = 1200 m CD = 600 m AE = 900 m .为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖 OPMN ?若存在,求四边形 OPMN 面积的最小值及这时点 N 到点 A 的距离;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中, BAC = 90 ° AB = AC

(1)如图1,已知点 D BC 边上, DAE = 90 ° AD = AE ,连结 CE .试探究 BD CE 的关系;

(2)如图2,已知点 D BC 下方, DAE = 90 ° AD = AE ,连结 CE .若 BD AD AB = 2 10 CE = 2 AD BC 于点 F ,求 AF 的长;

(3)如图3,已知点 D BC 下方,连结 AD BD CD .若 CBD = 30 ° BAD > 15 ° A B 2 = 6 A D 2 = 4 + 3 ,求 sin BCD 的值.

来源:2021年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在 A 处测得国旗 D 处的仰角为 45 ° ,站在同一队列 B 处的小刚测得国旗 C 处的仰角为 23 ° ,已知小明目高 AE = 1 . 4 米,距旗杆 CG 的距离为15.8米,小刚目高 BF = 1 . 8 米,距小明24.2米,求国旗的宽度 CD 是多少米?(最后结果保留一位小数)

(参考数据: sin 23 ° 0 . 3907 cos 23 ° 0 . 9205 tan 23 ° 0 . 4245 )

来源:2021年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O D O 的直径 AB 的延长线上一点, DCB = OAC .过圆心 O BC 的平行线交 DC 的延长线于点 E

(1)求证: CD O 的切线;

(2)若 CD = 4 CE = 6 ,求 O 的半径及 tan OCB 的值.

来源:2021年甘肃省武威市中考数学试卷
  • 题型:未知
  • 难度:未知

全国历史文化名城宜宾有许多名胜古迹,始建于明朝的白塔是其中之一.如图,为了测量白塔的高度 AB ,在 C 处测得塔顶 A 的仰角为 45 ° ,再向白塔方向前进15米到达 D 处,又测得塔顶 A 的仰角为 60 ° ,点 B D C 在同一水平线上,求白塔的高度 AB ( 3 1 . 7 ,精确到1米)

来源:2021年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 AB 摆成如图1所示.已知 AB = 4 . 8 m ,鱼竿尾端 A 离岸边 0 . 4 m ,即 AD = 0 . 4 m .海面与地面 AD 平行且相距 1 . 2 m ,即 DH = 1 . 2 m

(1)如图1,在无鱼上钩时,海面上方的鱼线 BC 与海面 HC 的夹角 BCH = 37 ° ,海面下方的鱼线 CO 与海面 HC 垂直,鱼竿 AB 与地面 AD 的夹角 BAD = 22 ° .求点 O 到岸边 DH 的距离;

(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 BAD = 53 ° ,此时鱼线被拉直,鱼线 BO = 5 . 46 m ,点 O 恰好位于海面.求点 O 到岸边 DH 的距离.

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5 )

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点 A 处时,在 P 处测得 A 点的仰角 DPA 30 ° A P 两点的距离为6千米,它沿铅垂线上升7.5秒后到达 B 处,此时在 P 处测得 B 点的仰角 DPB 45 ° ,求天舟二号从 A 处到 B 处的平均速度.(结果精确到 1 m / s ,取 3 = 1 . 732 2 = 1 . 414 )

来源:2021年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知