今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在 A 处测得国旗 D 处的仰角为 45 ° ,站在同一队列 B 处的小刚测得国旗 C 处的仰角为 23 ° ,已知小明目高 AE = 1 . 4 米,距旗杆 CG 的距离为15.8米,小刚目高 BF = 1 . 8 米,距小明24.2米,求国旗的宽度 CD 是多少米?(最后结果保留一位小数)
(参考数据: sin 23 ° ≈ 0 . 3907 , cos 23 ° ≈ 0 . 9205 , tan 23 ° ≈ 0 . 4245 )
如图,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)小明为了探究这个问题,将此情景画在了草稿纸上(如右图所示):运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为(木棒下滑为匀速)已知木棒与水平地面的夹角为,随木棒的下滑而不断减小。的最大值为30°,若木棒长为。问:当木棒顶端从A滑到B这个过程中,木棒末端的速度为多少?
如图,⊙O的直径6cm,是延长线上的一点,过点作⊙O的切线,切点为,连接。(1)若30°,求PC的长;(2)若点在的延长线上运动,的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的值。
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)(下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)
某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图20所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.
如图所示,一段街道的两边缘所在直线分别为AB、PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.