如图,在等腰直角三角形 中, ,边长为2的正方形 的对角线交点与点 重合,连接 .
(1)求证: ;
(2)当点 在 内部,且 吋,设 与 相交于点 ,求 的长;
(3)将正方形 绕点 旋转一周,当点 三点在同一直线上时,请直接写出 的长.
如图, 在正方形 中, , 点 在 边上, 且 , 与 关于 所在直线对称,将 按顺时针方向绕点 旋转 得到 ,连接 ,求线段 的长.
已知两个不相等的实数 满足 ,且 .
(1)求 的值;
(2)已知自变量为 的函数 交 轴交于不同的两点 ,函数图象的顶点为 ,若 是等边三角形,求 的值;
(3)已知自变量为 的函数 ,当 时,总有 成立,求 的取值范围.
如图, 已知直线 与拋物线 交于 两点.
(1)求 两点的坐标;
(2)求线段 的垂直平分线的解析式;
(3)取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处,用铅笔拉着这根橡皮筋使笔尖 在直线 上方的抛物线上移动,动点 将与 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点 的坐标;如果不存在,请简要说明理由.
已知二次函数 的图象开口向上,且经过点 .
(1)求 的值(用含 的代数式表示);
(2)若二次函数 在 时, 的最大值为1,求 的值;
(3)将线段 向右平移 个单位得到线段 .若线段 与抛物线 仅有一个交点,求 的取值范围.
如图,抛物线 与 轴交于 两点,与 轴交于 点, .
(1)求拋物线的解析式;
(2)在第二象限内的拋物线上确定一点 ,使四边形 的面积最大,求出点 的坐标;
(3)在(2)的结论下,点 为 轴上一动点,抛物线上是否存在一点 ,使点 为顶点的四边形是平行四边形,若存在,请直接写出 点的坐标;若不存在,请说明理由.
在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 元,并且每周( 天)涨价 元,从第 周开始保持 元的价格平稳销售;从第 周开始,当季节即将过去时,平均每周减价 元,直到第 周周末,该服装不再销售.
(1)试建立销售价 与周次 之间的函数关系式;
(2)若这种时装每件进价 与周次 之间的关系为 ,且 为整数,试问该服装第几周出售时,每件销售利润最大,最大利润为多少?
已知二次函数 的图象经过两点 .
(1)如果 都是整数,且 ,求 的值;
(2)设二次函数 的图象与 轴的交点为 ,与 轴的交点为 .如果关于 的方程 的两个根都是整数,求 的面积.
甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费 元,那么 辆汽车可以全部租出.如果每辆汽车的月租费每增加 元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费 元.
乙公司经理:我公司每辆汽车月租费 元,无论是否租出汽车,公司均需一次性支付月维护费共计 元.
说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为 辆时,甲公司的月利润是____元;当每个公司租出的汽车为____辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出 辆汽车捐出 元 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为 辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 的取值范围.
在“乡村振兴”行动中,某村办企业以 两种农作物为原料开发了一种有机产品. 原料的单价是 原料单价的 倍,若用 元收购 原料会比用900元收购 原料少 .生产该产品每盒需要 原料 和 原料 ,每盒还需其他成本 元.市场调查发现:该产品每盒的售价是 元时,每天可以销售 盒;每涨价 元,每天少销售 盒.
(1)求每盒产品的成本(成本 原料费 其他成本 ;
(2)设每盒产品的售价是 元( 是整数),每天的利润是 元,求 关于 的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过 元( 是大于 的常数,且是整数),直接写出每天的最大利润.
红星公司销售一种成本为 元/件的产品,若月销售单价不高于 元 件,一个月可售出 万件;月销售单价每涨价 元,月销售量就减少 万件.其中月销售单价不低于成本.设月销售单价为 (单位:元/件),月销售量为 (单位:万件).
(1)直接写出 与 之间的函数关系式,并写出自变量 的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 元.已知该公司捐款当月的月销售单价不高于 元/件,月销售最大利润是 万元,求 的值.