在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 20 元,并且每周( 7 天)涨价 2 元,从第 6 周开始保持 30 元的价格平稳销售;从第 12 周开始,当季节即将过去时,平均每周减价 2 元,直到第 16 周周末,该服装不再销售.
(1)试建立销售价 y 与周次 x 之间的函数关系式;
(2)若这种时装每件进价 Z 与周次 x 之间的关系为 Z = - 0 . 125 ( x - 8 ) 2 + 12 , 1 ⩽ x ⩽ 16 ,且 x 为整数,试问该服装第几周出售时,每件销售利润最大,最大利润为多少?
先化简,再求值:(a-2b)2-4b(a+b),其中a=-1,b=2.
因式分解: 2-12+18
阅读下文,寻找规律.计算,,……. (1)观察上式,并猜想: . (2)根据你的猜想,计算: .(其中n是正整数)
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B表示的数 _______,点P表示的数________(用含t的代数式表示); (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q? (3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长; (4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC. (1)若∠BOC=62°,求∠DOE的度数; (2)若∠BOC=a°,求∠DOE的度数; (3)图中是否有互余的角?若有请写出所有互余的角.