已知两个不相等的实数 a , b 满足 a ( a - 2 ) = 2 , b ( b - 2 ) = 2 ,且 5 m = a 2 b + b 2 a .
(1)求 m 的值;
(2)已知自变量为 x 的函数 y = x 2 + mx + n 交 x 轴交于不同的两点 A , B ,函数图象的顶点为 C ,若 △ ABC 是等边三角形,求 n 的值;
(3)已知自变量为 x 的函数 y = m x 2 - tx - m ,当 - 1 ⩽ x ⩽ 1 时,总有 y ⩽ 3 成立,求 t 的取值范围.
已知反比例函数 y = 4 x .
(1)若该反比例函数的图象与直线 y = kx + 4 ( k ≠ 0 ) 只有一个公共点,求k的值;
(2)如图,反比例函数 y = 4 x ( 1 ≤ x ≤ 4 ) 的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.
请你根据以上的信息,回答下列问题:
(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .
(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.
如图,点B、E、C、F在同一条直线上, AB = DE , AC = DF , BE = CF ,求证: AB ∥ DE .
解方程: 5 x + 2 = 3 ( x + 2 )
如图所示,已知抛物线 y = a ( x + 3 )( x ﹣ 1 )( a ≠ 0 ) ,与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线 y = - 3 + b 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 2 3 3 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?