如图, 已知直线 y = - 1 2 x 与拋物线 y = - 1 4 x 2 + 6 交于 A , B 两点.
(1)求 A , B 两点的坐标;
(2)求线段 AB 的垂直平分线的解析式;
(3)取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处,用铅笔拉着这根橡皮筋使笔尖 P 在直线 AB 上方的抛物线上移动,动点 P 将与 A , B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点 P 的坐标;如果不存在,请简要说明理由.
为了提高新产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场。现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍。 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
如图,△ABC的中线BD、CE交于点O,F、G分别是BO、CO的中点。 求证:四边形EFGD为平行四边形。
如图,△ABC中 (1)画出△ABC关于x轴对称的△ (2)将△ABC绕原点O旋转180°,画出旋转后的△。
化简求值,其中
解方程: