初中数学

某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.

(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?

(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别: A 0 x 10 B 10 x 20 C 20 x 30 D 30 x 40 E x 40 .并将调查结果绘制了如图两幅不完整的统计图:

根据统计图提供的作息,解答下列问题:

(1)本次共调查了  名学生;

(2)根据以上信息直接在答题卡上补全条形统计图;

(3)扇形統计图中m  ,类别D所对应的扇形圆心角α的度数是  度;

(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, Rt ABC 中, BCA 90 ° AC 3 BC 4 ,点O在线段 BC 上,且 OC = 3 2 ,以O为圆心. OC 为半径的 O 交线段AO于点D,交线段AO的延长线于点E

(1)求证: AB O 的切线;

(2)研究过短中,小明同学发现 AC AE = AD AC ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

(1)计算 ( - 1 2 ) - 1 - 3 tan 60 ° + - 3 + ( 2 cos 60 ° - 2020 ) 0

(2)解不等式组: 3 - x 2 1 3 x + 2 4

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在 ABC 中, AB 6 cm AC 5 cm CAB 60 ° ,点DAB的中点,线段 AC 上有一动点E,连接DE,作DA关于直线DE的对称图形,得到 DF ,过点F FG AB 于点G.设AE两点间的距离为 xcm F G 两点间的距离为 ycm

小军根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.

下面是小军的探究过程,请补充完整.

(1)列表:如表的已知数据是根据AE两点间的距离x进行取点、画图、测量,分别得到了xy的几组对应值:

x/cm

0

0.51

1.03

1.41

1.50

1.75

2.20

2.68

3.00

3.61

4.10

4.74

5.00

y/cm

0

0.94

1.91

2.49

  

2.84

3.00

2.84

2.60

2.00

1.50

0.90

0.68

请你通过计算补全表格;

(2)描点、连线:在平面直角坐标系 xOy 中(如图2),描出表中各组数值所对应的点 x y ,并画出y关于x的图象;

(3)探究性质:随着x值的不断增大,y的值是怎样变化的?  

(4)解决问题:当 AE + FG 2 时,FG的长度大约是  cm(保留两位小数).

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.

名称

红外线体温检测仪

安装示意图

技术参数

探测最大角: OBC 73 . 14 °

探测最小角: OAC 30 . 97 °

安装要求

本设备需安装在垂直于水平地面AC的支架CP

根据以上内容,解决问题:

学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC

(结果精确到0.1m,参考数据: sin 73 . 14 ° 0 . 957 cos 73 . 14 ° 0 . 290 ,t an 73 . 14 ° 3 . 300 sin 30 . 97 ° 0 . 515 cos 30 . 97 ° 0 . 857 t an 30 . 97 ° 0 . 600

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:

信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;

信息二:

信息三:

近一周家务劳动时间分布表

时间/小时

t 1

1 t 2

2 t 3

3 t 4

t 4

人数/人

5

8

12

7

3

信息四:

劳动能力量化成绩与近一周家务劳动总时间统计表

成绩/分

人数

时间/小时

6

7

8

9

10

t 1

4

1

0

0

0

1 t 2

0

6

1

1

0

2 t 3

0

0

9

3

0

3 t 4

0

1

1

3

2

t 4

0

0

0

1

2

根据以上信息,解决下列问题:

(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为  分;

(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)

①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:  

②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:  

③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在 2 t 3 的时间段:  

(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt AOB 中, AOB 90 ° OA OB ,点C AB 的中点,以OC为半径作 O

(1)求证: AB O 的切线;

(2)若 OC 2 ,求 OA 的长.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,一次函数 y ax + b a 0 的图象与反比例函数 y = k x k 0 x 0 的图象相交于 A 1 5 B m 1 两点,与x轴,y轴分别交于点CD,连接OAOB

(1)求反比例函数 y = k x k 0 x 0 和一次函数 y ax + b a 0 的表达式;

(2)求 AOB 的面积.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:

A:陇南市宕昌县哈达铺红军长征纪念馆;

B:陇南市两当兵变纪念馆;

C:甘南州迭部县腊子口战役纪念馆;

D:张掖市高台县中国工农红军西路军纪念馆.

小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AD 平分 BAC BC 边于点 E ,交 O 于点 D ,过点 A AF BC 于点 F ,设 O 的半径为 R AF = h

(1)过点 D 作直线 MN / / BC ,求证: MN O 的切线;

(2)求证: AB · AC = 2 R · h

(3)设 BAC = 2 α ,求 AB + AC AD 的值(用含 α 的代数式表示).

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,著名旅游景区 B 位于大山深处,原来到此旅游需要绕行 C 地,沿折线 A C B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从 A 地到景区 B 的笔直公路.请结合 A = 45 ° B = 30 ° BC = 100 千米, 2 1 . 4 3 1 . 7 等数据信息,解答下列问题:

(1)公路修建后,从 A 地到景区 B 旅游可以少走多少千米?

(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加 25 % ,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,直线 y 1 = ax + b 与双曲线 y 2 = k x ( k 0 ) 分别相交于第二、四象限内的 A ( m , 4 ) B ( 6 , n ) 两点,与 x 轴相交于 C 点.已知 OC = 3 tan ACO = 2 3

(1)求 y 1 y 2 对应的函数表达式;

(2)求 ΔAOB 的面积;

(3)直接写出当 x < 0 时,不等式 ax + b > k x 的解集.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学解答题