如图, ΔABC 内接于 ⊙ O , AD 平分 ∠ BAC 交 BC 边于点 E ,交 ⊙ O 于点 D ,过点 A 作 AF ⊥ BC 于点 F ,设 ⊙ O 的半径为 R , AF = h .
(1)过点 D 作直线 MN / / BC ,求证: MN 是 ⊙ O 的切线;
(2)求证: AB · AC = 2 R · h ;
(3)设 ∠ BAC = 2 α ,求 AB + AC AD 的值(用含 α 的代数式表示).
解方程组或不等式(组) (每题6分共30分)(2)(3) (1) (4)(5)
如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明。(适当添加辅助线,其实并不难)
如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm, 求:(1)△ABC的面积; (2)CD的长; (3)作出△ABC的边AC上的中线BE,并求出△ABE的面积; (4)作出△BCD的边BC边上的高DF,当BD="11cm" 时,试求出DF的长。
如图,建立平面直角坐标系,使B,C的坐标分别为(-2,0)和(2,0). (1)画出坐标系,写出点A、D的坐标; (2)若将△ABE向右平移4个单位,然后向上平移3个 单位后,得△A′B′E′,在图中画出△A′B′E′。
开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本。 (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出。