如图,著名旅游景区 B 位于大山深处,原来到此旅游需要绕行 C 地,沿折线 A → C → B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从 A 地到景区 B 的笔直公路.请结合 ∠ A = 45 ° , ∠ B = 30 ° , BC = 100 千米, 2 ≈ 1 . 4 , 3 ≈ 1 . 7 等数据信息,解答下列问题:
(1)公路修建后,从 A 地到景区 B 旅游可以少走多少千米?
(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加 25 % ,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?
(1)计算:|﹣|+(2014﹣)0﹣3tan30°; (2)先化简,再求值:,其中是2x2-2x-7=0的根.
如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2. (1)当=1s时,S的值是多少? (2) 当时,点E、F、G分别在边AB、BC、CD上移动,用含t的代数式表示S;当时,点E在边AB上移动,点F、G都在边CD上移动,用含t的代数式表示S. (3)若点F在矩形的边BC上移动,当为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由
如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)在抛物线上是否存在点P,使得∠PCO=∠POC?若存在,求出符合条件的点P的坐标;若不存在,说明理由; (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
如图,△ABC中,AB=AC,以AC为直径的⊙O与边BC交于点E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G. (1)判断直线FG与⊙O的位置关系,并证明你的结论; (2)若BF=1,CG=2,求⊙O半径.
【改编】如图,小明为测量树CD的高度,先测量了两棵树根部之间的距离BD=5m,已知树高AB=8m,站在点F处正好能望见CD的顶部,测得FB=8米,小明眼睛离地面的高度EF为1.6m,问树CD多高?