如图,在一座山的前方有一栋住宅,已知山高 ,楼高 ,某天上午9时太阳光线从山顶点 处照射到住宅的点 外.在点 处测得点 的俯角 ,上午10时太阳光线从山顶点 处照射到住宅点 处,在点 处测得点 的俯角 ,已知每层楼的高度为 , ,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?
某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥 是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥 的上方120米的点 处悬停,此时测得桥两端 , 两点的俯角分别为 和 ,求桥 的长度.
居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为 ,底部的俯角为 ;又用绳子测得测角仪距地面的高度 为 .求该大楼的高度(结果精确到 .
(参考数据: , ,
如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼 的高度进行测量,先测得居民楼 与 之间的距离 为 ,后站在 点处测得居民楼 的顶端 的仰角为 ,居民楼 的顶端 的仰角为 ,已知居民楼 的高度为 ,小莹的观测点 距地面 .求居民楼 的高度(精确到 .(参考数据: , , .
某兴趣小组为了测量大楼 的高度,先沿着斜坡 走了52米到达坡顶点 处,然后在点 处测得大楼顶点 的仰角为 ,已知斜坡 的坡度为 ,点 到大楼的距离 为72米,求大楼的高度 .
(参考数据: , ,
如图,无人机在离地面60米的 处,观测楼房顶部 的俯角为 ,观测楼房底部 的俯角为 ,求楼房的高度.
如图,山顶上有一个信号塔 ,已知信号塔高 米,在山脚下点 处测得塔底 的仰角 ,塔顶 的仰角 ,求山高 (点 , , 在同一条竖直线上).
(参考数据: , , .
为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图,隧道 在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点 处测得点 的俯角为 ,继续飞行1500米到达点 处,测得点 的俯角为 .
(1)填空: 度, 度;
(2)求隧道 的长度(结果精确到1米).
(参考数据: ,
位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道 上架设测角仪,先在点 处测得观星台最高点 的仰角为 ,然后沿 方向前进 到达点 处,测得点 的仰角为 .测角仪的高度为 .
(1)求观星台最高点 距离地面的高度(结果精确到 .参考数据: , , , ;
(2)“景点简介”显示,观星台的高度为 .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
如图,为测量建筑物 的高度,在 点测得建筑物顶部 点的仰角为 ,再向建筑物 前进30米到达 点,测得建筑物顶部 点的仰角为 , , 三点在一条直线上),求建筑物 的高度.(结果保留整数.参考数据: , , , , ,
如图所示,某建筑物楼顶有信号塔 ,卓玛同学为了探究信号塔 的高度,从建筑物一层 点沿直线 出发,到达 点时刚好能看到信号塔的最高点 ,测得仰角 , 长7米.接着卓玛再从 点出发,继续沿 方向走了8米后到达 点,此时刚好能看到信号塔的最低点 ,测得仰角 .(不计卓玛同学的身高)求信号塔 的高度(结果保留根号).
如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高 .他俩在小明家的窗台 处,测得商业大厦顶部 的仰角 的度数,由于楼下植物的遮挡,不能在 处测得商业大厦底部 的俯角的度数.于是,他俩上楼来到小华家,在窗台 处测得大厦底部 的俯角 的度数,竟然发现 与 恰好相等.已知 , , 三点共线, , , , ,试求商业大厦的高 .
某市为了加快 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点 测得发射塔顶端 点的仰角是 ,向前走60米到达 点测得 点的仰角是 ,测得发射塔底部 点的仰角是 .请你帮小军计算出信号发射塔 的高度.(结果精确到0.1米,
如图,校园内有两幢高度相同的教学楼 , ,大楼的底部 , 在同一平面上,两幢楼之间的距离 长为24米,小明在点 , , 在一条直线上)处测得教学楼 顶部的仰角为 ,然后沿 方向前进8米到达点 处,测得教学楼 顶部的仰角为 .已知小明的两个观测点 , 距离地面的高度均为1.6米,求教学楼 的高度 长.(精确到0.1米)参考值: , .