如图,正方形 中, , 是 边的中点,点 是正方形内一动点, ,连接 ,将线段 绕点 逆时针旋转 得 ,连接 , .
(1)求证: ;
(2)若 , , 三点共线,连接 ,求线段 的长.
(3)求线段 长的最小值.
如图,在 中, 为 上一点,以点 为圆心, 为半径做圆,与 相切于点 ,过点 作 交 的延长线于点 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图,在 中, 于点O,交BC于点E, , 交DE于点F,连接 ,点H为线段 上一点,连接 .
(1)判断四边形 的形状,并说明理由;
(2)当 时,求证: .
如图,一次函数 的图象与 轴, 轴分别交于 , 两点,过点 作直线 与 垂直,点 在直线 位于 轴上方的部分.
(1)求一次函数 的表达式;
(2)若 的面积为11,求点 的坐标;
(3)当 时,点 的坐标为 .
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
如图, 是 直径,点 , 为 上的两点,且 ,连接 , 交于点 , 的切线 与 延长线相交于点 , 为切点.
(1)求证: ;
(2)若 , ,求 的长.
如图, 是 的外接圆,点 在 边上, 的平分线交 于点 ,连接 , ,过点 作 的切线与 的延长线交于点 .
(1)求证: ;
(2)求证: ;
(3)当 , 时,求线段 的长.
如图,点 在以 为直径的 上, 的角平分线与 相交于点 ,与 相交于点 ,延长 至 ,连结 ,使得 ,过点 作 的平行线与 的延长线交于点 .
(1)求证: 与 相切;
(2)试给出 、 、 之间的数量关系,并予以证明.
如图,过 外一点 作 的切线 切 于点 ,连接 并延长,与 交于 、 两点, 是半圆 的中点,连接 交 于点 ,连接 、 .
(1)求证: ;
(2)若 , ,求 的长.
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.
如图,已知 是 的直径,直线 与 相切于点 ,过点 作 交 于点 ,连接 .
(1)求证: 是 的切线.
(2)若 ,直径 ,求线段 的长.