初中数学

如图,二次函数 y = - x 2 + 4 x + 5 图象的顶点为 D ,对称轴是直线 l ,一次函数 y = 2 5 x + 1 的图象与 x 轴交于点 A ,且与直线 DA 关于 l 的对称直线交于点 B

(1)点 D 的坐标是           

(2)直线 l 与直线 AB 交于点 C N 是线段 DC 上一点(不与点 D C 重合),点 N 的纵坐标为 n .过点 N 作直线与线段 DA DB 分别交于点 P Q ,使得 ΔDPQ ΔDAB 相似.

①当 n = 27 5 时,求 DP 的长;

②若对于每一个确定的 n 的值,有且只有一个 ΔDPQ ΔDAB 相似,请直接写出 n 的取值范围            

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,平面内的两条直线 l 1 l 2 ,点 A B 在直线 l 1 上,点 C D 在直线 l 2 上,过 A B 两点分别作直线 l 2 的垂线,垂足分别为 A 1 B 1 ,我们把线段 A 1 B 1 叫做线段 AB 在直线 l 2 上的正投影,其长度可记作 T ( AB , CD ) T ( AB , l 2 ) ,特别地线段 AC 在直线 l 2 上的正投影就是线段 A 1 C

请依据上述定义解决如下问题:

(1)如图1,在锐角 ΔABC 中, AB = 5 T ( AC , AB ) = 3 ,则 T ( BC , AB ) =       

(2)如图2,在 Rt Δ ABC 中, ACB = 90 ° T ( AC , AB ) = 4 T ( BC , AB ) = 9 ,求 ΔABC 的面积;

(3)如图3,在钝角 ΔABC 中, A = 60 ° ,点 D AB 边上, ACD = 90 ° T ( AD , AC ) = 2 T ( BC , AB ) = 6 ,求 T ( BC , CD )

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC = 4 ACB = 90 ° ,正方形 BDEF 的边长为2,将正方形 BDEF 绕点 B 旋转一周,连接 AE BE CD

(1)请找出图中与 ΔABE 相似的三角形,并说明理由;

(2)求当 A E F 三点在一直线上时 CD 的长;

(3)设 AE 的中点为 M ,连接 FM ,试求 FM 长的取值范围.

来源:2019年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, A 为反比例函数 y = k x (其中 x > 0 ) 图象上的一点,在 x 轴正半轴上有一点 B OB = 4 .连接 OA AB ,且 OA = AB = 2 10

(1)求 k 的值;

(2)过点 B BC OB ,交反比例函数 y = k x (其中 x > 0 ) 的图象于点 C ,连接 OC AB 于点 D ,求 AD DB 的值.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + 3 2 x + 2 x 轴交于点 A B ,与 y 轴交于点 C

(1)试求 A B C 的坐标;

(2)将 ΔABC AB 中点 M 旋转 180 ° ,得到 ΔBAD

①求点 D 的坐标;

②判断四边形 ADBC 的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点 P ,使 ΔBMP ΔBAD 相似?若存在,请直接写出所有满足条件的 P 点的坐标;若不存在,请说明理由.

来源:2017年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + 2 x + n 经过点 M ( - 1 , 0 ) ,顶点为 C

(1)求点 C 的坐标;

(2)设直线 y = 2 x 与抛物线交于 A B 两点(点 A 在点 B 的左侧).

①在抛物线的对称轴上是否存在点 G .使 AGC = BGC ?若存在,求出点 G 的坐标;若不存在,请说明理由;

②点 P 在直线 y = 2 x 上,点 Q 在抛物线上,当以 O M P Q 为顶点的四边形是平行四边形时,求点 Q 的坐标.

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC > AB BAD 的平分线 AF BD BC 分别交于点 E F ,点 O BD 的中点,直线 OK / / AF ,交 AD 于点 K ,交 BC 于点 G

(1)求证:① ΔDOK ΔBOG ;② AB + AK = BG

(2)若 KD = KG BC = 4 - 2

①求 KD 的长度;

②如图2,点 P 是线段 KD 上的动点(不与点 D K 重合), PM / / DG KG 于点 M PN / / KG DG 于点 N ,设 PD = m ,当 S ΔPMN = 2 4 时,求 m 的值.

来源:2016年海南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线相交于点 O ,点 M N 分别是边 BC CD 上的动点(不与点 B C D 重合), AM AN 分别交 BD 于点 E F ,且 MAN 始终保持 45 ° 不变.

(1)求证: AF AM = 2 2

(2)求证: AF FM

(3)请探索:在 MAN 的旋转过程中,当 BAM 等于多少度时, FMN = BAM ?写出你的探索结论,并加以证明.

来源:2016年山东省淄博市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 3 x 2 + bx + c 经过 ΔABC 的三个顶点,其中点 A ( 0 , 1 ) ,点 B ( - 9 , 10 ) AC / / x 轴,点 P 是直线 AC 下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点 P 且与 y 轴平行的直线 l 与直线 AB AC 分别交于点 E F ,当四边形 AECP 的面积最大时,求点 P 的坐标;

(3)当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q ,使得以 C P Q 为顶点的三角形与 ΔABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2016年山东省潍坊市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知:如图,在矩形 ABCD 中, AB = 6 cm BC = 8 cm ,对角线 AC BD 交于点 O .点 P 从点 A 出发,沿 AD 方向匀速运动,速度为 1 cm / s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1 cm / s ;当一个点停止运动时,另一个点也停止运动.连接 PO 并延长,交 BC 于点 E ,过点 Q QF / / AC ,交 BD 于点 F .设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, ΔAOP 是等腰三角形?

(2)设五边形 OECQF 的面积为 S ( c m 2 ) ,试确定 S t 的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形 OECQF : S ΔACD = 9 : 16 ?若存在,求出 t 的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻 t ,使 OD 平分 COP ?若存在,求出 t 的值;若不存在,请说明理由.

来源:2016年山东省青岛市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究

如图1,在四边形 ABCD 中, AB = AD BAD = 60 ° ABC = ADC = 90 ° ,点 E F 分别在线段 BC CD 上, EAF = 30 ° ,连接 EF

(1)如图2,将 ΔABE 绕点 A 逆时针旋转 60 ° 后得到△ A ' B ' E ' ( A ' B ' AD 重合),请直接写出 E ' AF =      度,线段 BE EF FD 之间的数量关系为       

(2)如图3,当点 E F 分别在线段 BC CD 的延长线上时,其他条件不变,请探究线段 BE EF FD 之间的数量关系,并说明理由.

(二)拓展延伸

如图4,在等边 ΔABC 中, E F 是边 BC 上的两点, EAF = 30 ° BE = 1 ,将 ΔABE 绕点 A 逆时针旋转 60 ° 得到△ A ' B ' E ' ( A ' B ' AC 重合),连接 EE ' AF EE ' 交于点 N ,过点 A AM BC 于点 M ,连接 MN ,求线段 MN 的长度.

来源:2016年山东省济南市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知: AB O 的直径,延长 AB 到点 P ,过点 P 作圆 O 的切线,切点为 C ,连接 AC ,且 AC = CP

(1)求 P 的度数;

(2)若点 D 是弧 AB 的中点,连接 CD AB 于点 E ,且 DE · DC = 20 ,求 O 的面积. ( π 3 . 14 )

来源:2018年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质计算题