直线 与反比例函数 的图象分别交于点 和点 ,与坐标轴分别交于点 和点 .
(1)求直线 的解析式;
(2)若点 是 轴上一动点,当 与 相似时,求点 的坐标.
在矩形 中, , ,动点 从点 出发,以每秒1个单位的速度,沿 向点 移动;同时点 从点 出发,仍以每秒1个单位的速度,沿 向点 移动,连接 , , .若两个点同时运动的时间为 秒 ,解答下列问题:
(1)设 的面积为 ,用含 的函数关系式表示 ;当 为何值时, 有最大值?并求出最小值;
(2)是否存在 的值,使得 ?试说明理由.
如图,在 中, , , .线段 由线段 绕点 按逆时针方向旋转 得到, 由 沿 方向平移得到,且直线 过点 .
(1)求 的大小;
(2)求 的长.
如图,在 中, , , .线段 由线段 绕点 按逆时针方向旋转 得到, 由 沿 方向平移得到,且直线 过点 .
(1)求 的大小;
(2)求 的长.
如图1,一次函数 与反比例函数 的图象交于点 , ,与 轴交于点 ,直线 与反比例函数 的图象的另一支交于点 ,过点 作直线 垂直于 轴,点 是点 关于直线 的对称点.
(1) ;
(2)判断点 、 、 是否在同一条直线上,并说明理由;
(3)如图2,已知点 在 轴正半轴上, ,点 是反比例函数 的图象位于第一象限部分上的点(点 在点 的上方), ,则点 的坐标为 , .
如图,已知正方形 的边长为4,点 是 边上的一个动点,连接 ,过点 作 的垂线交 于点 ,以 为边作正方形 ,顶点 在线段 上,对角线 、 相交于点 .
(1)若 ,则 ;
(2)①求证:点 一定在 的外接圆上;
②当点 从点 运动到点 时,点 也随之运动,求点 经过的路径长;
(3)在点 从点 到点 的运动过程中, 的外接圆的圆心也随之运动,求该圆心到 边的距离的最大值.
(探索发现)
如图①,是一张直角三角形纸片, ,小明想从中剪出一个以 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 、 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
(拓展应用)
如图②,在 中, , 边上的高 ,矩形 的顶点 、 分别在边 、 上,顶点 、 在边 上,则矩形 面积的最大值为 .(用含 , 的代数式表示)
(灵活应用)
如图③,有一块“缺角矩形” , , , , ,小明从中剪出了一个面积最大的矩形( 为所剪出矩形的内角),求该矩形的面积.
(实际应用)
如图④,现有一块四边形的木板余料 ,经测量 , , ,且 ,木匠徐师傅从这块余料中裁出了顶点 、 在边 上且面积最大的矩形 ,求该矩形的面积.
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 , 的半径为 , 为 上一动点.
(1)点 , 的坐标分别为 , ;
(2)是否存在点 ,使得 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由;
(3)连接 ,若 为 的中点,连接 ,则 的最大值 .
如图,已知矩形 中, , ,动点 从点 出发,在边 上以每秒1个单位的速度向点 运动,连接 ,作点 关于直线 的对称点 ,设点 的运动时间为 .
(1)若 ,求当 , , 三点在同一直线上时对应的 的值.
(2)已知 满足:在动点 从点 到点 的整个运动过程中,有且只有一个时刻 ,使点 到直线 的距离等于3,求所有这样的 的取值范围.
如图,以原点 为圆心,3为半径的圆与 轴分别交于 , 两点(点 在点 的右边), 是半径 上一点,过 且垂直于 的直线与 分别交于 , 两点(点 在点 的上方),直线 , 交于点 .若 .
(1)求点 的坐标;
(2)求过点 和点 ,且顶点在直线 上的抛物线的函数表达式.
在平面直角坐标系中,已知 、 、 、 .
(1)四边形 的周长的最小值为 ,此时四边形 的形状为 ;
(2)在(1)的情况下, 为 的中点, 为 上一动点,连接 ,作 交四边形的边于点 ,在点 从 运动到 的过程中:
①求 的值;
②若 的中点为 ,在整个运动过程中,请直接写出点 所经过的路线长.
如图, 是平面直角坐标系中第四象限内一点,过点 作 轴于点 ,以 为斜边在右侧作等腰 ,已知直角顶点 的纵坐标为 ,连接 交 于 , .
(1)求点 的坐标;
(2)连接 ,求 的面积与 的面积之比.
在平面直角坐标系中,已知 、 、 、 .
(1)四边形 的周长的最小值为 ,此时四边形 的形状为 ;
(2)在(1)的情况下, 为 的中点, 为 上一动点,连接 ,作 交四边形的边于点 ,在点 从 运动到 的过程中:
①求 的值;
②若 的中点为 ,在整个运动过程中,请直接写出点 所经过的路线长.
如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.