如图1,在矩形 ABCD 中, BC > AB , ∠ BAD 的平分线 AF 与 BD 、 BC 分别交于点 E 、 F ,点 O 是 BD 的中点,直线 OK / / AF ,交 AD 于点 K ,交 BC 于点 G .
(1)求证:① ΔDOK ≅ ΔBOG ;② AB + AK = BG ;
(2)若 KD = KG , BC = 4 - 2 .
①求 KD 的长度;
②如图2,点 P 是线段 KD 上的动点(不与点 D 、 K 重合), PM / / DG 交 KG 于点 M , PN / / KG 交 DG 于点 N ,设 PD = m ,当 S ΔPMN = 2 4 时,求 m 的值.
计算-+×(23-1)×(-5)×(-))
又PE⊥CB于E,若BC=10,且CE∶EB=3∶2,求AB的长.
197×203
( 998 ) 2
a - b 2 - a a - 2 b