已知:如图, 是 的直径, ,点 , 是 上两点,连接 , , ,弦 平分 , ,过点 作 交 的延长线于点 ,垂足为点 .
(1)求扇形 的面积(结果保留 ;
(2)求证: 是 的切线.
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
在等腰 中, ,以 为直径的 分别与 , 相交于点 , ,过点 作 ,垂足为点 .
(1)求证: 是 的切线;
(2)分别延长 , ,相交于点 , , 的半径为6,求阴影部分的面积.
如图, 为 的直径,射线 交 于点 ,点 为劣弧 的中点,过点 作 ,垂足为 ,连接 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分的面积.
如图,平面直角坐标系内,小正方形网格的边长为1个单位长度, 的三个顶点的坐标分别为 , , .
(1)画出 关于 轴的对称图形△ ;
(2)画出将 绕原点 逆时针方向旋转 得到的△ ;
(3)求(2)中线段 扫过的图形面积.
如图, 为半圆 的直径, 是 的一条弦, 为 的中点,作 ,交 的延长线于点 ,连接 .
(1)求证: 为半圆 的切线;
(2)若 ,求阴影区域的面积.(结果保留根号和
如图,已知直线 与 相切于点 ,直线 与 相交于 , 两点.
(1)求证: ;
(2)若 ,求图中阴影部分的面积.
如图,在 中, ,以 为直径的 分别与 、 交于点 、 ,过点 作 于点 .
(1)若 的半径为3, ,求阴影部分的面积;
(2)求证: 是 的切线;
(3)求证: .
如图, 是 的直径, 是 上一点, 于点 ,过点 作 的切线,交 的延长线于点 ,连接 .
(1)求证: 与 相切;
(2)设 交 于点 ,若 , ,求阴影部分的面积.
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
如图, 是 的直径, 为 上一点 不与点 , 重合)连接 , ,过点 作 ,垂足为点 .将 沿 翻折,点 落在点 处得 , 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分面积.
某种冰激凌的外包装可以视为圆锥,它的底面圆直径 与母线 长之比为 .制作这种外包装需要用如图所示的等腰三角形材料,其中 , .将扇形 围成圆锥时, , 恰好重合.
(1)求这种加工材料的顶角 的大小.
(2)若圆锥底面圆的直径 为 ,求加工材料剩余部分(图中阴影部分)的面积.(结果保留
如图, 为 的直径, 为 上一点, 的平分线交 于点 , 于点 .
(1)试判断 与 的位置关系,并说明理由;
(2)过点 作 于点 ,若 , ,求图中阴影部分的面积.
如图, 为 的直径, 是 上一点,过点 的直线交 的延长线于点 , ,垂足为 , 是 与 的交点, 平分 .
(1)求证: 是 的切线;
(2)若 , ,求图中阴影部分的面积.