如图, AB 是 ⊙ O 的直径, C 是 ⊙ O 上一点, OD ⊥ BC 于点 D ,过点 C 作 ⊙ O 的切线,交 OD 的延长线于点 E ,连接 BE .
(1)求证: BE 与 ⊙ O 相切;
(2)设 OE 交 ⊙ O 于点 F ,若 DF = 1 , BC = 2 3 ,求阴影部分的面积.
如图11,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF。(5分)
如图10,已知△BCE、△ADC都是等边三角形。求证:AE=BD。
如图8,已知点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:△ABC≌△DEF。
计算(每小题4分,12分) (1) (2) (3)若求的值
某地有两座工厂和两条交叉的公路,图中点M、N表示工厂,OA、OB表示公路,现计划修建一座物资仓库,希望仓库到两工厂的距离相同,到两条公路的的距离相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计。 (尺规作图,不写作法,保留作图痕迹)