在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
计算:
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C. (1)求弦AB的长; (2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由; (3)记△ABC的面积为S,若,求△ABC的周长.
如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程= 0的两根,AB =" m." 试求: (1)⊙O的半径;(2)由PA,PB,围成图形(即阴影部分)的面积. (计算结果用含有π的式子表示)
如图,⊙O的直径AB=4,∠ABC=30°,BC=4,D是线段BC的中点。 (1)试判断点D与⊙O的位置关系,并说明理由; (2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线。
若关于x的方程. (1)方程有两个不相等的实数根,求实数的取值范围. (2)若方程的一个根是,求的值及另一个根.