如图, AB 为 ⊙ O 的直径, C 是 ⊙ O 上一点,过点 C 的直线交 AB 的延长线于点 D , AE ⊥ DC ,垂足为 E , F 是 AE 与 ⊙ O 的交点, AC 平分 ∠ BAE .
(1)求证: DE 是 ⊙ O 的切线;
(2)若 AE = 6 , ∠ D = 30 ° ,求图中阴影部分的面积.
如图,在直角坐标平面内,函数(,是常数)的图象经过,,其中.过点作轴垂线,垂足为,过点作轴垂线,垂足为,连结,,.若的面积为4,求点的坐标;若,当时,求直线的函数的解析式.
在长方形中画出5条线,把它分成的块数与画线的方式有直接关系.按如图1的方式画线,可以把它分成10块.请你在图2中画出5条线,使得把这个长方形分成的块数最少(重合的线只看做一条),最少可分成 块;请你在图2中画出5条线,使得把这个长方形分成的块数最多,最多可分成 块.(画出图形不写画法和理由)
如图,在中,,以AB为直径的交BC于点D,DE⊥AC于点E.求证DE是的切线;若∠BAC=120°,AB=2,求△DEC的面积.
已知,求的值.
同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做:(1)观察并猜想:12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)12+22+32=(1+0)×1+(1+1)×2+(1+2)×3=1+0×1+2+1×2+3+2×3=(1+2+3)+(0×1+1×2+2×3)12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+ =1+0×1+2+1×2+3+2×3+ =(1+2+3+4)+( )……(2)归纳结论:12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n=( ) += + =× (3)实践应用:通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是 .