如图, AB 为半圆 O 的直径, AC 是 ⊙ O 的一条弦, D 为 BC ̂ 的中点,作 DE ⊥ AC ,交 AB 的延长线于点 F ,连接 DA .
(1)求证: EF 为半圆 O 的切线;
(2)若 DA = DF = 6 3 ,求阴影区域的面积.(结果保留根号和 π )
某校初三年级“数学兴趣小组”实地测量操场旗杆的高度.旗杆的影子落在操场和操场边的土坡上,如图所示,测得在操场上的影长BC="20" m,斜坡上的影长CD=2m,已知斜坡CD与操场平面的夹角为45°,同时测得身高l.65m的学生在操场 上的影长为3.3 m.求旗杆AB的高度。(结果精确到1m)(提示:同一时刻物高与影长成正比.参考数据:≈1.414.≈1.732.≈2.236)
阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成长方形,使△ABC的两个顶点为长方形一边的两个端点,第三个顶点落在长方形这一边的对边上,那么符合要求的长方形可以画出两个:长方形ACBD和长方形AEFB(如图2)。 解答问题: (1)设图2中长方形ACBD和长方形AEFB的面积分别为S1,S2,则S1 S2(填“>”、“=”或“<”) (2)如图3,△ABC是钝角三角形,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图3把它画出来。 (3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图4把它画出来。 (4)在(3)中所画出的长方形中,哪一个的周长最小?为什么?
在正方形ABCD中,点E在BC边所在直线上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB。证明:△BGF是等腰直角三角形。
如图,矩形ABCD的BC边在直线l上,AD=5,AB=3, P为直线l上的点,且△AEP是腰长为5的等腰三角形,则BP=
如图,已知△ABC中,AB=,AC=,BC=6,点M在AB边上,且AM=BM,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长。