初中数学

如图, O 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 A n ( n 1 ~ 12 的整数),过点 A 7 O 的切线交 A 1 A 11 延长线于点 P

(1)通过计算比较直径和劣弧 A 7 A 11 ̂ 长度哪个更长;

(2)连接 A 7 A 11 ,则 A 7 A 11 P A 1 有什么特殊位置关系?请简要说明理由;

(3)求切线长 P A 7 的值.

来源:2021年河北省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° O AB 相交于点 C ,与 AO 相交于点 E ,连接 CE ,已知 AOC = 2 ACE

(1)求证: AB O 的切线;

(2)若 AO = 20 BO = 15 ,求 CE 的长.

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D DE AC ,垂足为 E

(1)求证: DE O 的切线;

(2)若弦 MN 垂直于 AB ,垂足为 G AG AB = 1 4 MN = 3 ,求 O 的半径;

(3)在(2)的条件下,当 BAC = 36 ° 时,求线段 CE 的长.

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知的直径,的切线,上的点,是直径上的动点,与直线上的点连线距离的最小值为与直线上的点连线距离的最小值为

(1)求证:的切线;

(2)设,求的正弦值;

(3)设,求的取值范围.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD

(1)求证:直线 OD是⊙ E的切线;

(2)点 Fx轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG

①当tan∠ ACF 1 7 时,求所有 F点的坐标  (直接写出);

②求 BG CF 的最大值.

来源:2019年广东省深圳市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知点 C 是以 AB 为直径的半圆上一点, D AB 延长线上一点,过点 D BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED

(1)求证: CD O 的切线;

(2)若 tan DCE = 2 BD = 1 ,求 O 的半径.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, Rt ABC 中, BCA 90 ° AC 3 BC 4 ,点O在线段 BC 上,且 OC = 3 2 ,以O为圆心. OC 为半径的 O 交线段AO于点D,交线段AO的延长线于点E

(1)求证: AB O 的切线;

(2)研究过短中,小明同学发现 AC AE = AD AC ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt AOB 中, AOB 90 ° OA OB ,点C AB 的中点,以OC为半径作 O

(1)求证: AB O 的切线;

(2)若 OC 2 ,求 OA 的长.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

初中数学切线的判定与性质解答题