初中数学

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB 的垂直平分线分别交 AB AC 于点 D E BE = 8 O ΔBCE 的外接圆,过点 E O 的切线 EF AB 于点 F ,则下列结论正确的是    . (写出所有正确结论的序号)

AE = BC

AED = CBD

③若 DBE = 40 ° ,则 DE ^ 的长为 8 π 9

DF EF = EF BF

⑤若 EF = 6 ,则 CE = 2 . 24

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,正方形ABCD中,点E、F分别在AB、BC上,DH⊥EF于H,DA=HD,EH=2,HF=3.则正方形ABCD的边长为        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知的直径,的切线,上的点,是直径上的动点,与直线上的点连线距离的最小值为与直线上的点连线距离的最小值为

(1)求证:的切线;

(2)设,求的正弦值;

(3)设,求的取值范围.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知二次函数的图象过点,点不重合)是图象上的一点,直线过点且平行于轴.于点,点

(1)求二次函数的解析式;

(2)求证:点在线段的中垂线上;

(3)设直线交二次函数的图象于另一点于点,线段的中垂线交于点,求的值;

(4)试判断点与以线段为直径的圆的位置关系.

来源:2019年四川省雅安市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c 经过点 A ( - 1 , 0 ) 和点 C ( 0 , 3 ) x 轴的另一交点为点 B ,点 M 是直线 BC 上一动点,过点 M MP / / y 轴,交抛物线于点 P

(1)求该抛物线的解析式;

(2)在抛物线上是否存在一点 Q ,使得 ΔQCO 是等边三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由;

(3)以 M 为圆心, MP 为半径作 M ,当 M 与坐标轴相切时,求出 M 的半径.

来源:2020年贵州省遵义市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,抛物线为常数,轴交于两点,点为抛物线的顶点,点的坐标为,连接并延长与过三点的相交于点

(1)求点的坐标;

(2)过点的切线轴于点

①如图1,求证:

②如图2,连接,当时,求的值.

来源:2019年湖南省长沙市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图, O 的半径为1,点 A O 的直径 BD 延长线上的一点, C O 上的一点, AD = CD A = 30 °

(1)求证:直线 AC O 的切线;

(2)求 ΔABC 的面积;

(3)点 E BND ̂ 上运动(不与 B D 重合),过点 C CE 的垂线,与 EB 的延长线交于点 F

①当点 E 运动到与点 C 关于直径 BD 对称时,求 CF 的长;

②当点 E 运动到什么位置时, CF 取到最大值,并求出此时 CF 的长.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接

(1)求的度数;

(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;

(3)分别记的面积为,当时,求弦的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,的三个顶点分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)

(1)求点的坐标;

(2)将绕点逆时针旋转得到△,抛物线经过两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接,求△的面积;

(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖南省岳阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, A ( - 2 , - 1 ) B ( 3 , - 1 ) ,以 O 为圆心, OA 的长为半径的半圆 O AO 延长线于 C ,连接 AB BC ,过 O ED / / BC 分别交 AB 和半圆 O E D ,连接 OB CD

(1)求证: BC 是半圆 O 的切线;

(2)试判断四边形 OBCD 的形状,并说明理由;

(3)如图2,若抛物线经过点 D 且顶点为 E

①求此抛物线的解析式;

②点 P 是此抛物线对称轴上的一个动点,以 E D P 为顶点的三角形与 ΔOAB 相似,问抛物线上是否存在一点 Q .使 S ΔEPQ = S ΔOAB ?若存在,请直接写出 Q 点的横坐标;若不存在,说明理由.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, BC = 3 CD ,点 E F 分别是边 AD BC 上的动点,且 AE = CF ,连接 EF ,将矩形 ABCD 沿 EF 折叠,点 C 落在点 G 处,点 D 落在点 H 处.

(1)如图1,当 EH 与线段 BC 交于点 P 时,求证: PE = PF

(2)如图2,当点 P 在线段 CB 的延长线上时, GH AB 于点 M ,求证:点 M 在线段 EF 的垂直平分线上;

(3)当 AB = 5 时,在点 E 由点 A 移动到 AD 中点的过程中,计算出点 G 运动的路线长.

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ,点 B ,与 y 轴交于点 C ,抛物线的对称轴为直线 x = - 1 ,点 C 坐标为 ( 0 , 4 )

(1)求抛物线表达式;

(2)在抛物线上是否存在点 P ,使 ABP = BCO ,如果存在,求出点 P 坐标;如果不存在,请说明理由;

(3)在(2)的条件下,若点 P x 轴上方,点 M 是直线 BP 上方抛物线上的一个动点,求点 M 到直线 BP 的最大距离;

(4)点 G 是线段 AC 上的动点,点 H 是线段 BC 上的动点,点 Q 是线段 AB 上的动点,三个动点都不与点 A B C 重合,连接 GH GQ HQ ,得到 ΔGHQ ,直接写出 ΔGHQ 周长的最小值.

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

初中数学圆试题