如图,抛物线 y = - 1 2 x 2 + bx + c 与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,抛物线的对称轴为直线 x = - 1 ,点 C 坐标为 ( 0 , 4 ) .
(1)求抛物线表达式;
(2)在抛物线上是否存在点 P ,使 ∠ ABP = ∠ BCO ,如果存在,求出点 P 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 P 在 x 轴上方,点 M 是直线 BP 上方抛物线上的一个动点,求点 M 到直线 BP 的最大距离;
(4)点 G 是线段 AC 上的动点,点 H 是线段 BC 上的动点,点 Q 是线段 AB 上的动点,三个动点都不与点 A , B , C 重合,连接 GH , GQ , HQ ,得到 ΔGHQ ,直接写出 ΔGHQ 周长的最小值.
阅读计算:阅读下列各式:回答下列三个问题:①验证: __ . __.②通过上述验证, 归纳得出: __; __ .请应用上述性质计算:
若点C在线段AB的延长线上,点D、E分别为线段CB、AC的中点,DE=6,画出图形并求AB的长度.
如图所示,点D、E分别为线段CB、AC的中点,若ED=6,求线段AB的长度.
(1)化简后再求值:,其中、、满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因。①你的判断是 (填同意或者不同意).②原因:
解下列方程(1) (2)