如图,抛物线 y = a x 2 + 9 4 x + c 经过点 A ( - 1 , 0 ) 和点 C ( 0 , 3 ) 与 x 轴的另一交点为点 B ,点 M 是直线 BC 上一动点,过点 M 作 MP / / y 轴,交抛物线于点 P .
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点 Q ,使得 ΔQCO 是等边三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由;
(3)以 M 为圆心, MP 为半径作 ⊙ M ,当 ⊙ M 与坐标轴相切时,求出 ⊙ M 的半径.
如图,点E、F、G、H分别为矩形ABCD四条边的中点,证明:四边形EFGH是菱形.
三角形三条边长分别为1、2、,求其三条中线长.
一次数学测试,某小组五名同学的成绩统计如下表所示,求m,n的值.
图中折线是某个函数的图象,根据图象解答下列问题.(1)写出自变量x的取值范围:____________,函数值y的取值范围:_____________.(2)自变量x=1.5时,求函数值.
将分别标有数字1、2、3、5的四张质地大小完全相同的卡片背面朝上放在桌面上.(1)任意抽取一张,求抽到数字是偶数的概率.(2)任意抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数大于23的概率.