当今,青少年视力水平下降已引起全社会的关注,为了了解某校4000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:解答下列问题:(1)本次抽样调查共抽测了 名学生.(2)参加抽测的学生的视力的众数在 范围.(3)若视力为4.9、5.0、5.1.及以上为正常,试估计该校学生的视力正常的人数约为多少?(4)请你就该学校学生的视力状况,谈一谈你的想法.
某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)
某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:
(1)求a,b的值;(2)补全频数分布直方图;(3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?
在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.
如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.
已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.