当今,青少年视力水平下降已引起全社会的关注,为了了解某校4000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:解答下列问题:(1)本次抽样调查共抽测了 名学生.(2)参加抽测的学生的视力的众数在 范围.(3)若视力为4.9、5.0、5.1.及以上为正常,试估计该校学生的视力正常的人数约为多少?(4)请你就该学校学生的视力状况,谈一谈你的想法.
如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.
(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE. (2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2. (1)Rt△ADE与Rt△BEC全等吗?并说明理由; (2)△CDE是不是直角三角形?并说明理由.
如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F. (1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF; (2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.
如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.