等边△ABC的边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.图一 图二 图三(1)如图l,当点P为BC的三等分点,且PE⊥AB时,试判断△EPF的形状;(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=,四边形AEPF的面积为,求与的函数关系式,并写出自变量的取值范围;(3)如图3,若点P在BC边上运动,且MPN绕点P旋转,当CF=AE=2时,求PE的长.
某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是 (只填所有正确结论的代号);
(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?
给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.
如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B是弧CF的中点.(1)求证:△ABF≌△DCB;(2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.
九年级五班某同学为了测量某市电视台的高度,进行了如下操作:(1)在点A处安置测倾器,测得塔顶C的仰角∠CAB=30°;(2)他沿着电视塔方向前进了80米到达B处,又测得塔顶C的仰角为60°;(3)量出测倾器AF的高度AF=1.5米.根据测量数据,请你计算出电视塔的高度CE约为多少米.(精确到0.1米,≈1.73)
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.(1)求k的值和边AC的长;(2)求点B的坐标.