初中数学

已知 AB O 的任意一条直径.

(1)用图1,求证: O 是以直径 AB 所在直线为对称轴的轴对称图形;

(2)已知 O 的面积为 4 π ,直线 CD O 相切于点 C ,过点 B BD CD ,垂足为 D ,如图2.

求证:① 1 2 B C 2 = 2 BD

②改变图2中切点 C 的位置,使得线段 OD BC 时, OD = 2 2

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 M O 经过点 B C ,交对角线 BD 于点 E ,且 CE ̂ = BE ̂ ,连接 OE BC 于点 F

(1)试判断 AB O 的位置关系,并说明理由;

(2)若 BD = 32 5 5 tan CBD = 1 2 ,求 O 的半径.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, AB O 直径,点 C D O 上的两点,且 AD ̂ = CD ̂ ,连接 AC BD 交于点 E O 的切线 AF BD 延长线相交于点 F A 为切点.

(1)求证: AF = AE

(2)若 AB = 8 BC = 2 ,求 AF 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,延长 CA 到点 D ,以 AD 为直径作 O ,交 BA 的延长线于点 E ,延长 BC 到点 F ,使 BF = EF

(1)求证: EF O 的切线;

(2)若 OC = 9 AC = 4 AE = 8 ,求 BF 的长.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

课本再现

(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 A 相等的角是   

类比迁移

(2)如图2,在四边形 ABCD 中, ABC ADC 互余,小明发现四边形 ABCD 中这对互余的角可类比(1)中思路进行拼合:先作 CDF = ABC ,再过点 C CE DF 于点 E ,连接 AE ,发现 AD DE AE 之间的数量关系是   

方法运用

(3)如图3,在四边形 ABCD 中,连接 AC BAC = 90 ° ,点 O ΔACD 两边垂直平分线的交点,连接 OA OAC = ABC

①求证: ABC + ADC = 90 °

②连接 BD ,如图4,已知 AD = m DC = n AB AC = 2 ,求 BD 的长(用含 m n 的式子表示).

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

在一次数学探究活动中,李老师设计了一份活动单:

已知线段 BC = 2 ,使用作图工具作 BAC = 30 ° ,尝试操作后思考:

(1)这样的点 A 唯一吗?

(2)点 A 的位置有什么特征?你有什么感悟?

“追梦”学习小组通过操作、观察、讨论后汇报:点 A 的位置不唯一,它在以 BC 为弦的圆弧上(点 B C 除外), .小华同学画出了符合要求的一条圆弧(如图 1 )

(1)小华同学提出了下列问题,请你帮助解决.

①该弧所在圆的半径长为   

ΔABC 面积的最大值为   

(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 A ' ,请你根据图1证明 BA ' C > 30 °

(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 ABCD 的边长 AB = 2 BC = 3 ,点 P 在直线 CD 的左侧,且 tan DPC = 4 3

①线段 PB 长的最小值为   

②若 S ΔPCD = 2 3 S ΔPAD ,则线段 PD 长为   

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AD / / BC BAD = 90 ° CB = CD ,连接 BD ,以点 B 为圆心, BA 长为半径作 B ,交 BD 于点 E

(1)试判断 CD B 的位置关系,并说明理由;

(2)若 AB = 2 3 BCD = 60 ° ,求图中阴影部分的面积.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, O 为线段 PB 上一点,以 O 为圆心, OB 长为半径的 O PB 于点 A ,点 C O 上,连接 PC ,满足 P C 2 = PA PB

(1)求证: PC O 的切线;

(2)若 AB = 3 PA ,求 AC BC 的值.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AC O 的直径, AC BD 交于点 E PB O 于点 B

(1)求证: PBA = OBC

(2)若 PBA = 20 ° ACD = 40 ° ,求证: ΔOAB ΔCDE

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° ,以点 O 为圆心, OA 为半径的圆交 AB 于点 C ,点 D 在边 OB 上,且 CD = BD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)已知 tan ODC = 24 7 AB = 40 ,求 O 的半径.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O 1 = 2 ,延长 BC 到点 E ,使得 CE = AB ,连接 ED

(1)求证: BD = ED

(2)若 AB = 4 BC = 6 ABC = 60 ° ,求 tan DCB 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在几何体表面上,蚂蚁怎样爬行路径最短?

(1)如图①,圆锥的母线长为 12 cm B 为母线 OC 的中点,点 A 在底面圆周上, AC ̂ 的长为 4 πcm .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 A 爬行到点 B 的最短路径,并标出它的长(结果保留根号).

(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. O 是圆锥的顶点,点 A 在圆柱的底面圆周上,设圆锥的母线长为 l ,圆柱的高为 h

①蚂蚁从点 A 爬行到点 O 的最短路径的长为   l + h  (用含 l h 的代数式表示).

②设 AD ̂ 的长为 a ,点 B 在母线 OC 上, OB = b .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 A 爬行到点 B 的最短路径的示意图,并写出求最短路径的长的思路.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,已知 P O 外一点.用两种不同的方法过点 P O 的一条切线.

要求:(1)用直尺和圆规作图;

(2)保留作图的痕迹,写出必要的文字说明.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动.

(1) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一点,且 AE = 1 ,小亮以 BE 为边作等边三角形 BEF ,如图1.求 CF 的长;

(2) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一个动点,小亮以 BE 为边作等边三角形 BEF ,如图2.在点 E 从点 C 到点 A 的运动过程中,求点 F 所经过的路径长;

(3) ΔABC 是边长为3的等边三角形, M 是高 CD 上的一个动点,小亮以 BM 为边作等边三角形 BMN ,如图3.在点 M 从点 C 到点 D 的运动过程中,求点 N 所经过的路径长;

(4)正方形 ABCD 的边长为3, E 是边 CB 上的一个动点,在点 E 从点 C 到点 B 的运动过程中,小亮以 B 为顶点作正方形 BFGH ,其中点 F G 都在直线 AE 上,如图4.当点 E 到达点 B 时,点 F G H 与点 B 重合.则点 H 所经过的路径长为    ,点 G 所经过的路径长为   

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

初中数学圆解答题