如图,在 Rt Δ AOB 中, ∠ AOB = 90 ° ,以点 O 为圆心, OA 为半径的圆交 AB 于点 C ,点 D 在边 OB 上,且 CD = BD .
(1)判断直线 CD 与 ⊙ O 的位置关系,并说明理由;
(2)已知 tan ∠ ODC = 24 7 , AB = 40 ,求 ⊙ O 的半径.
解方程: .
先化简,再取一个你喜欢的数代入求值
已知如图,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.(1)求、两点坐标,并证明点在直线上;(2)求二次函数解析式;(3)过点作直线∥交直线于点,、分别为直线和直线上的两个动点,连接、、,求和的最小值.
(1)阅读理解先观察和计算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9 2,4+4 2,2+3 2。请猜想:当则 。如∵展开∴6+5。请你给出猜想的一个相仿的说明过程。(2)知识应用①如图⊙O中,⊙O的半径为5,点P为⊙O内一个定点,OP=2,过点P作两条互相垂直的弦,即AC⊥BD, 作ON⊥BD,OM⊥AC,垂足为M、N,求的值。②在上述基础上,连接AB、BC、CD、DA,利用①中的结论,探求四边形ABCD面积的最大值。
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数.(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值及∠1的度数。