(1)阅读理解先观察和计算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9 2,4+4 2,2+3 2。请猜想:当则 。如∵展开∴6+5。请你给出猜想的一个相仿的说明过程。(2)知识应用①如图⊙O中,⊙O的半径为5,点P为⊙O内一个定点,OP=2,过点P作两条互相垂直的弦,即AC⊥BD, 作ON⊥BD,OM⊥AC,垂足为M、N,求的值。②在上述基础上,连接AB、BC、CD、DA,利用①中的结论,探求四边形ABCD面积的最大值。
如图,在中,.以AB为直径作圆⊙O交AC于点D,点E为⊙O上的一点,连接ED并延长与BC的延长线交于点F.连接AE、BE,∠BAE=60°,∠F=15°,解答下列问题.(1)求证:直线FB是⊙O的切线;(2)若BE=cm,求AC的长.
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).
如图,在平面直角坐标系xoy中,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点B坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.(3)直接写出时的x取值范围.
有3张不透明的卡片,除正面写着不同的数字-1、-2、3外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率。(用树状图或列表法求解)
某校九年级两个班各捐款1800元.已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%.求两个班人均捐款各为多少元?