如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数.(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值及∠1的度数。
在等腰直角△ABC中,∠BAC=90°,AB=AC, (1)如图1,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.求证,EF⊥CD; (2)如图2,AD=AE,AF⊥BE于点G交BC于点F,过F作FP⊥CD交BE的延长线于点P,试探究线段BP,FP,AF之间的数量关系,并说明理由. 图1图2
已知二次函数与x轴交于A(1,0)、B(3,0)两点;二次函数的顶点为P. (1)请直接写出:b=_______,c=___________; (2)当∠APB=90°,求实数k的值; (3)若直线与抛物线L2交于E,F两点,问线段EF的长度是否发生变化?如果不发生变化,请求出EF的长度;如果发生变化,请说明理由.
在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形平分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF. 小明的作图步骤如下: 第一步:连结AC; 第二步:过点B作BE//AC交DC的延长线于点E; 第三步:取ED中点F,作直线AF; 则直线AF即为所求. 请参考小明思考问题的方法,解决问题: 如图2,五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).请你构造一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,并求出该直线的解析式.
为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表: 根据图表提供的信息,回答下列问题: (1)样本中,女生身高在E组的有2人,抽样调查了__________名女生,共抽样调查了__________名学生; (2) 补全条形统计图; (3)已知该校共有男生400人,女生380人,请估计身高在160≤x <170之间的学生约有多少人.
如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长交BC的延长线于点F.[w&^ww~.*zz@step.com] (1)求证:∠BDF=∠F; (2)如果CF=1,sinA=,求⊙O的半径.