如图, 是半圆 的直径,点 是半圆上一点,连接 , ,以点 为顶点, 为边作 ,延长 交 于点 .
(1)求证:直线 是半圆 的切线;
(2)若 , ,求 的长.
如图,在 中,以 为直径的 交 于点 ,过点 作 于点 ,延长 交 的延长线于点 ,且 .
(1)求证: 是 的切线;
(2)若 , 的半径是3,求 的长.
如图,在等腰 中, ,以 为直径的 与 相交于点 ,过点 作 交 延长线于点 ,垂足为点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 的半径 , ,求 的长.
如图, 中, ,以 为直径的 交 于点 , 、 是 上两点,连接 、 、 ,满足 .
(1)求证: 是 的切线;
(2)若 的半径为3, ,求 的长.
阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知 为 的中位线, 是边 上一动点,连接 交 于点 ,那么动点 为线段 中点.
理由: 线段 为 的中位线, ,
由平行线分线段成比例得:动点 为线段 中点.
由此你得到动点 的运动轨迹是: .
知识应用:
如图2,已知 为等边 边 、 上的动点,连接 ;若 ,且等边 的边长为8,求线段 中点 的运动轨迹的长.
拓展提高:
如图3, 为线段 上一动点(点 不与点 、 重合),在线段 的同侧分别作等边 和等边 ,连接 、 ,交点为 .
(1)求 的度数;
(2)若 ,求动点 运动轨迹的长.
已知:四边形 是菱形,以 为圆心作 ,与 相切于点 ,交 于 ,交 于 ,连接 , .
(1)求证: 是 的切线;
(2)连接 交 于点 ,若 ,求证: .
如图, 内接于 , 是直径, ,在 的内部作 ,且 ,过点 作 于点 ,连接 .
(1)若 交 于点 , 的半径是4,求 的长;
(2)请判断直线 与 的位置关系,并说明理由.
如图, 为 直径, 为 的弦,过 外的点 作 于点 ,交 于点 ,连接 并延长交 的延长线于点 ,且 ,作 于点 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , ,请求出 的长.
如图,在 中, , 于点 , 是 上一点,以 为直径的 交 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
在平面直角坐标系中, 的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出 关于 轴对称的△ ;
(2)将 绕点 逆时针旋转 ,画出旋转后得到的△ ,并直接写出此过程中线段 扫过图形的面积(结果保留
如图, 是 直径,点 在 上, 平分 , 是 的切线, 与 相交于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,以 的边 为直径的 交 边于点 ,交 边于点 ,连接 ,过点 的切线交 的延长线于点 , .
(1)求证: 为等腰三角形.
(2)求证: .
如图, 内接于 , 的边 是 的直径,且 ,连接 .
(1)求证: 是 的切线.
(2)若 , ,求 与弦 围成的阴影部分的面积.
如图, , 均为直角三角形, , , 与 相交于点 ,以 为直径的 恰好经过点 ,并与 , 分别交于点 和点 .
(1)求证: .
(2)若 , ,求 的长.