如图,在 ΔABC 中,以 BC 为直径的 ⊙ O 交 AC 于点 E ,过点 E 作 EF ⊥ AB 于点 F ,延长 EF 交 CB 的延长线于点 G ,且 ∠ ABG = 2 ∠ C .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 sin ∠ EGC = 3 5 , ⊙ O 的半径是3,求 AF 的长.
如图,用一根长为18米的篱笆靠墙围成一个长方形的空地用于绿化,且平行墙的一边为长,墙的长为12米。(1)若长方形的长比宽多1.5米,此时长、宽各是多少米?(2)在与墙平行的一边开设一个宽为1米的门(用其它材料),使长方形的长比宽多4米,此时它所围成的长方形的面积是多少米2?(3)若每块长方形草皮长1米、宽0.5米,每块草皮30元,铺满整块绿化地所购买的草皮不超过2400元,请试探究符合条件的长方形的长和宽的长度(长>宽且长、宽取整数)?
已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,若∠A+∠D=80°,则∠B+∠C= ;仔细观察,在图2中“8字形”的个数: 个;(2)在图2中,若∠DAO=50°,∠OCB=40°,∠P=35°,试求∠D的度数;(3)在图2中,若设∠D=x°,∠B=y°,其它条件不变,试求∠P的度数.
某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D、E,∠AFD=158°.求:(1)∠C的度数;(2)∠EDF的度数。
一次知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对道题.(1)根据所给条件,完成下表: (2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?