已知: 是正方形 的外接圆,点 在 上,连接 、 ,点 在 上连接 、 , 与 、 分别交于点 、点 ,且 平分 .
(1)如图1,求证: ;
(2)如图2,在线段 上取一点 (点 不与点 、点 重合),连接 交 于点 ,过点 作 交 于点 ,过点 作 ,垂足为点 ,当 时,求证: ;
(3)如图3,在(2)的条件下,当 时,延长 交 于点 ,连接 ,若 的面积与 的面积的差为 ,求线段 的长.
如图,以 的边 为直径画 ,交 于点 ,半径 ,连接 , , ,设 交 于点 ,若 .
(1)求证: 是 的切线;
(2)若 ,求图中阴影部分的面积.
如图, 是 的直径,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,作直径 ,过点 的切线交 的延长线于点 ,作 于点 ,连接 .
(1)求证: 平分 ;
(2)求证: ;
(3)当 且 时,求劣弧 的长度.
如图, 是 的直径,弦 与 交于点 ,且 ,连接 , .
(1)求证: ;
(2)若 , ,求弦 的长;
(3)在(2)的条件下,延长 至点 ,使 ,连接 .求证: 是 的切线.
如图,正六边形 内接于 , 是 的直径,连接 ,延长 ,过 作 ,垂足为 .
(1)求证: 是 的切线;
(2)已知 ,求图中阴影部分的面积.
如图,点 在 外, 是 的切线, 为切点,直线 与 相交于点 、 .
(1)若 ,求证: ;
(2)小明发现, 在一定范围内变化时,始终有 成立.请你写出推理过程.
如图,已知 是 的直径,点 是 上一点,连接 ,点 关于 的对称点 恰好落在 上.
(1)求证: ;
(2)过点 作 的切线 ,交 的延长线于点 .如果 , ,求 的直径.
如图,在 中, ,以 为直径的 与边 , 分别交于 , 两点,过点 作 于点 .
(1)判断 与 的位置关系,并说明理由;
(2)求证: 为 的中点;
(3)若 , ,求 的长.
如图, 为 的内接三角形, 为 的直径,过点 作 的切线交 的延长线于点 .
(1)求证: ;
(2)过点 作 的切线 交 于点 ,求证: ;
(3)若点 为直径 下方半圆的中点,连接 交 于点 ,且 , ,求 的长.
如图, 是 的弦,过 的中点 作 ,垂足为 ,过点 作直线 交 的延长线于点 ,使得 .
(1)求证: 是 的切线;
(2)若 , ,求 的面积.
如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, ,
(1)尺规作图(保留作图痕迹,不写作法)
①作 的垂直平分线,垂足为 ;
②以 为圆心, 长为半径作圆,交 于 异于 ,连接 ;
(2)探究 与 的位置关系,并证明你的结论.
如图1,已知 是 的外接圆, 的平分线 交 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)如图2,在图1的基础上做 的直径 交 于点 ,连接 ,过点 做 的切线 ,若 ,求 的度数;
(3)在(2)的条件下,若 的面积为 , 与 的面积比为 ,求 的长.
如图,已知 是 的外接圆,且 , ,连接 .
(1)求证: 是 的切线;
(2)若 , ,求 的长及 的半径.