如图,点 P 在 ⊙ O 外, PC 是 ⊙ O 的切线, C 为切点,直线 PO 与 ⊙ O 相交于点 A 、 B .
(1)若 ∠ A = 30 ° ,求证: PA = 3 PB ;
(2)小明发现, ∠ A 在一定范围内变化时,始终有 ∠ BCP = 1 2 ( 90 ° − ∠ P ) 成立.请你写出推理过程.
(本小题满分6分) 小明在研究了苏科版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图。该坐标系以O为原点,直线OA为x轴,以正六边形OABCDE的边长为一个单位长。坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为P点的坐标。坐标系中点的坐标的确定方法如下: (1)x轴上点M的坐标为(m,0),其中m为M在x轴上表示的实数; (2)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数; (3)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行饿直线与y轴的交点在y轴上表示的实数。 则:(1)分别写出点A、B、C的坐标; (2)标出点M(2,3)的位置; (3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式
(本小题满分7分) 如图,在△ABC和△CDE中,AB=AC=CE,BC=DC=DE,AB>BC,∠BAC=∠DCE=∠a,点B、C、D在直线l上,按下列要求画图(保留画图痕迹): (1)画出点E关于直线l的对称点E′,连接CE′、DE′; (2)以点C为旋转中心,将(1)中所得△CDE′按逆时针方向旋转,使得CE′与CA重合,得到△CD′E″(A)。画出△CD′E″(A),并解决下面问题: ①线段AB和线段CD′的位置关系是,理由是: ②求∠a的度数。
(本小题满分7分) 如图,在△ABC中,AB=AC,D为BC中点。四边形ABDE是平行四边形。 求证:四边形ADCE是矩形
(本小题满分5分) 如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB。 求证:AB=AC
(本小题满分8分) 如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜。(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止) (1)这个游戏规则对双方公平吗?说说你的理由; (2)请你设计一个对双方都公平的游戏规则。