如图,正六边形 ABCDEF 内接于 ⊙ O , BE 是 ⊙ O 的直径,连接 BF ,延长 BA ,过 F 作 FG ⊥ BA ,垂足为 G .
(1)求证: FG 是 ⊙ O 的切线;
(2)已知 FG = 2 3 ,求图中阴影部分的面积.
解不等式组:并把它的解集在数轴上表示出来.
我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象;(2)当S=12时,求点P的坐标;(3)△OPA的面积能大于40吗?为什么?
已知一次函数的图象经过点(3,6)与点(,﹣),求这个函数的解析式.