初中数学

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线相交于点 O M ΔBCD 的内切圆,切点分别为 N P Q DN = 4 BN = 6

(1)求 BC CD

(2)点 H 从点 A 出发,沿线段 AD 向点 D 以每秒3个单位长度的速度运动,当点 H 运动到点 D 时停止,过点 H HI / / BD AC 于点 I ,设运动时间为 t 秒.

①将 ΔAHI 沿 AC 翻折得△ AH ' I ,是否存在时刻 t ,使点 H ' 恰好落在边 BC 上?若存在,求 t 的值;若不存在,请说明理由;

②若点 F 为线段 CD 上的动点,当 ΔOFH 为正三角形时,求 t 的值.

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 沿对角线 AC 翻折,点 B 落在点 F 处, FC AD E

(1)求证: ΔAFE ΔCDE

(2)若 AB = 4 BC = 8 ,求图中阴影部分的面积.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AD = 12 AB = 8 E AB 上一点,且 EB = 3 F BC 上一动点,若将 ΔEBF 沿 EF 对折后,点 B 落在点 P 处,则点 P 到点 D 的最短距离为  

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形, AB = 20 BC = 10 ,以 CD 为一边向矩形外部作等腰直角 ΔGDC G = 90 ° .点 M 在线段 AB 上,且 AM = a ,点 P 沿折线 AD - DG 运动,点 Q 沿折线 BC - CG 运动(与点 G 不重合),在运动过程中始终保持线段 PQ / / AB .设 PQ AB 之间的距离为 x

(1)若 a = 12

①如图1,当点 P 在线段 AD 上时,若四边形 AMQP 的面积为48,则 x 的值为      

②在运动过程中,求四边形 AMQP 的最大面积;

(2)如图2,若点 P 在线段 DG 上时,要使四边形 AMQP 的面积始终不小于50,求 a 的取值范围.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿 DF 折叠,使点 A 落在 CD 边上点 E 处,如图②;

(Ⅱ)在第一次折叠的基础上,过点 C 再次折叠,使得点 B 落在边 CD 上点 B ' 处,如图③,两次折痕交于点 O

(Ⅲ)展开纸片,分别连接 OB OE OC FD ,如图④.

(探究)

(1)证明: ΔOBC ΔOED

(2)若 AB = 8 ,设 BC x O B 2 y ,求 y 关于 x 的关系式.

来源:2019年江苏省盐城市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, E 是矩形 ABCD 的边 CB 上的一点, AF DE 于点 F AB = 3 AD = 2 CE = 1 .求 DF 的长度.

来源:2020年四川省乐山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 BC = 2 ,点 E F 分别在 AB CD 上,且 BE = DF = 3 2

(1)求证:四边形 AECF 是菱形;

(2)求线段 EF 的长.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 2 AD = 4 E F 分别在 AD BC 上,点 A 与点 C 关于 EF 所在的直线对称, P 是边 DC 上的一动点.

(1)连接 AF CE ,求证四边形 AFCE 是菱形;

(2)当 ΔPEF 的周长最小时,求 DP CP 的值;

(3)连接 BP EF 于点 M ,当 EMP = 45 ° 时,求 CP 的长.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC .将 ΔABC 沿着 BC 方向平移得到 ΔDEF ,其中点 E 在边 BC 上, DE AC 相交于点 O

(1)求证: ΔOEC 为等腰三角形;

(2)连接 AE DC AD ,当点 E 在什么位置时,四边形 AECD 为矩形,并说明理由.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在矩形 ABCD CD 边上取一点 E ,将 ΔBCE 沿 BE 翻折,使点 C 恰好落在 AD 边上点 F 处.

(1)如图1,若 BC = 2 BA ,求 CBE 的度数;

(2)如图2,当 AB = 5 ,且 AF · FD = 10 时,求 BC 的长;

(3)如图3,延长 EF ,与 ABF 的角平分线交于点 M BM AD 于点 N ,当 NF = AN + FD 时,求 AB BC 的值.

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 E 出发沿折线段 ED DA 向点 A 运动,运动的时间为 t ( 0 t < 6 ) 秒,设 ΔBOP 与矩形 AOED 重叠部分的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 的运动过程中,是否存在点 P ,使 ΔBEP 为等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 A 出发沿折线段 AD DE 向点 E 运动,运动的时间为 t ( 0 t 6 ) 秒,设 ΔBPE 的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 运动的过程中,是否存在点 P ,使 ΔBEP 是以 BE 为腰的等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题