如图,在平面直角坐标系中,矩形 ABCD 的边 AB 在 x 轴上, AB 、 BC 的长分别是一元二次方程 x 2 − 7 x + 12 = 0 的两个根 ( BC > AB ) , OA = 2 OB ,边 CD 交 y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 A 出发沿折线段 AD − DE 向点 E 运动,运动的时间为 t ( 0 ⩽ t ⩽ 6 ) 秒,设 ΔBPE 的面积为 S .
(1)求点 D 的坐标;
(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;
(3)在点 P 运动的过程中,是否存在点 P ,使 ΔBEP 是以 BE 为腰的等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.
已知二次函数 (1) 求证:不论k为何值,该函数的图像与x轴总有两个公共点; (2) 该函数的图像与x轴交于A、B两点,与y轴交于点C。 当△ABC的面积等于2时,求k的值: 对任意负实数,当x>m时,随着的增大而减小,试求出的一个值
如图,矩形ABCD中,以对角线BD为一边构成一个矩形BDEF,使得另一边EF过原矩形的顶点C (1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空); (2)写出如图中的三对相似三角形,并选择其中一对进行证明.
我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线 的一部分.请根据图中信息解答下列问题:2·1·c·n·j·y (1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k的值; (3)当x=16时,大棚内的温度约为多少度?
马航飞机失联后,海空军部队第一时间赴相关海域开展搜寻工作,某舰船在O地修整时发现在它的北偏西,距离它40km的A地有一艘搜索船向正东方向航行,经过2小时后,发现此船已到达它东北方向的B处.问搜索船从A处到B处的航速是多少千米/小时(精确到1千米/小时)?(参考数据,,)
学校举行了“善行校园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成 A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2). (1)补全条形统计图. (2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.