初中数学

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知矩形 ABCD 的一条边 AD = 8 ,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处

(Ⅰ)如图1,已知折痕与边 BC 交于点 O ,连接 AP OP OA .若 ΔOCP ΔPDA 的面积比为 1 : 4 ,求边 CD 的长.

(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 AO 、线段 OP ,连接 BP .动点 M 在线段 AP 上(点 M 与点 P A 不重合),动点 N 在线段 AB 的延长线上,且 BN = PM ,连接 MN PB 于点 F ,作 ME BP 于点 E .试问当动点 M N 在移动的过程中,线段 EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 EF 的长度.

来源:2016年四川省自贡市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AC = 2 AB ,将矩形 ABCD 绕点 A 旋转得到矩形 AB ' C ' D ' ,使点 B 的对应点 B ' 落在 AC 上, B ' C ' AD 于点 E ,在 B ' C ' 上取点 F ,使 B ' F = AB

(1)求证: AE = C ' E

(2)求 FB B ' 的度数.

(3)已知 AB = 2 ,求 BF 的长.

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F BC 的延长线上,且 BE = CF

求证:(1) ΔABE ΔDCF

(2)四边形 AEFD 是平行四边形.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 在平面直角坐标系的第一象限内, BC x 轴平行, AB = 1 ,点 C 的坐标为 ( 6 , 2 ) E AD 的中点;反比例函数 y 1 = k x ( x > 0 ) 图象经过点 C 和点 E ,过点 B 的直线 y 2 = ax + b 与反比例函数图象交于点 F ,点 F 的纵坐标为4.

(1)求反比例函数的解析式和点 E 的坐标;

(2)求直线 BF 的解析式;

(3)直接写出 y 1 > y 2 时,自变量 x 的取值范围.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = = 2 AD = 3 P BC 边上的一点,且 BP = 2 CP

(1)用尺规在图①中作出 CD 边上的中点 E ,连接 AE BE (保留作图痕迹,不写作法);

(2)如图②,在(1)的条件下,判断 EB 是否平分 AEC ,并说明理由;

(3)如图③,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线, ΔPFB 能否由都经过 P 点的两次变换与 ΔPAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AD AB 上一点,若 AE = DC = 2 ED ,且 EF EC

(1)求证:点 F AB 的中点;

(2)延长 EF CB 的延长线相交于点 H ,连接 AH ,已知 ED = 2 ,求 AH 的值.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC 边上的中线, E AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: AF = DC

(2)若 AC AB ,试判断四边形 ADCF 的形状,并证明你的结论.

来源:2018年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 BC = 3 AF 平分 DAC ,分别交 DC BC 的延长线于点 E F ;连接 DF ,过点 A AH / / DF ,分别交 BD BF 于点 G H

(1)求 DE 的长;

(2)求证: 1 = DFC

来源:2019年广西梧州市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边上的点 E 处,过点 E EG / / CD AF 于点 G ,连接 DG

(1)求证:四边形 EFDG 是菱形;

(2)探究线段 EG GF AF 之间的数量关系,并说明理由;

(3)若 AG = 6 EG = 2 5 ,求 BE 的长.

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,延长 AB E ,延长 CD F BE = DF ,连接 EF ,与 BC AD 分别相交于 P Q 两点.

(1)求证: CP = AQ

(2)若 BP = 1 PQ = 2 2 AEF = 45 ° ,求矩形 ABCD 的面积.

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,延长 AB E ,延长 CD F BE = DF ,连接 EF ,与 BC AD 分别相交于 P Q 两点.

(1)求证: CP = AQ

(2)若 BP = 1 PQ = 2 2 AEF = 45 ° ,求矩形 ABCD 的面积.

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AM BN 是它的两条切线,过 O 上一点 E 作直线 DC ,分别交 AM BN 于点 D C ,且 DA = DE

(1)求证:直线 CD O 的切线;

(2)求证: O A 2 = DE · CE

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题