如图,将矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边上的点 E 处,过点 E 作 EG / / CD 交 AF 于点 G ,连接 DG .
(1)求证:四边形 EFDG 是菱形;
(2)探究线段 EG 、 GF 、 AF 之间的数量关系,并说明理由;
(3)若 AG = 6 , EG = 2 5 ,求 BE 的长.
已知在平面直角坐标系中的位置如图10所示.(1)分别写出图中点的坐标;(2)画出绕点按顺时针方向旋转;(3)求点旋转到点所经过的路线长(结果保留).
袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)
如图所示,在中,.(1)尺规作图:作线段的垂直平分线(保留作图痕迹,不写作法);(2)在已作的图形中,若分别交及的延长线于点,连接.求证:.
解不等式组,并把解集在数轴上表示出来.
先化简,再求值:,其中.